February  2018, 11(1): 59-76. doi: 10.3934/dcdss.2018004

A necessary condition of Pontryagin type for fuzzy fractional optimal control problems

1. 

Department of Applied Mathematics, School of Mathematics and Computer Science, Damghan University, Damghan, Iran

2. 

Center for Research & Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

* Corresponding author: Delfim F. M. Torres

Received  June 2016 Revised  November 2016 Published  January 2018

Fund Project: This work is part of second author's PhD project. It was partially supported by Damghan University, Iran; and CIDMA-FCT, Portugal, under project UID/MAT/04106/2013

We prove necessary optimality conditions of Pontryagin type for a class of fuzzy fractional optimal control problems with the fuzzy fractional derivative described in the Caputo sense. The new results are illustrated by computing the extremals of three fuzzy optimal control systems, which improve recent results of Najariyan and Farahi.

Citation: Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004
References:
[1]

T. AllahviranlooA. Armand and Z. Gouyandeh, Fuzzy fractional differential equations under generalized fuzzy Caputo derivative, J. Intell. Fuzzy Systems, 26 (2014), 1481-1490. Google Scholar

[2]

R. Almeida, S. Pooseh and D. F. M. Torres, Computational Methods in the Fractional Calculus of Variations Imp. Coll. Press, London, 2015. doi: 10.1142/p991. Google Scholar

[3]

S. Arshad and V. Lupulescu, On the fractional differential equations with uncertainty, Nonlinear Anal., 74 (2011), 3685-3693. doi: 10.1016/j.na.2011.02.048. Google Scholar

[4]

D. Baleanu and P. Agrawal, Fractional Hamilton formalism within Caputo's derivative, Czechoslovak J. Phys., 56 (2006), 1087-1092. doi: 10.1007/s10582-006-0406-x. Google Scholar

[5]

B. Bede and L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and Systems, 230 (2013), 119-141. doi: 10.1016/j.fss.2012.10.003. Google Scholar

[6]

J. J. Buckley and T. Feuring, Introduction to fuzzy partial differential equations, Fuzzy Sets and Systems, 105 (1999), 241-248. doi: 10.1016/S0165-0114(98)00323-6. Google Scholar

[7]

R. A. El-Nabulsi and D. F. M. Torres, Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β), Math. Methods Appl. Sci., 30 (2007), 1931-1939. doi: 10.1002/mma.879. Google Scholar

[8]

O. S. Fard and M. Salehi, A survey on fuzzy fractional variational problems, J. Comput. Appl. Math., 271 (2014), 71-82. doi: 10.1016/j.cam.2014.03.019. Google Scholar

[9]

O. S. FardD. F. M. Torres and M. R. Zadeh, A Hukuhara approach to the study of hybrid fuzzy systems on time scales, Appl. Anal. Discrete Math., 10 (2016), 152-167. doi: 10.2298/AADM160311004F. Google Scholar

[10]

O. S. Fard and M. S. Zadeh, Note on ''Necessary optimality conditions for fuzzy variational problems'', J. Adv. Res. Dyn. Control Syst., 4 (2012), 1-9. Google Scholar

[11]

B. Farhadinia, Necessary optimality conditions for fuzzy variational problems, Inform. Sci., 181 (2011), 1348-1357. doi: 10.1016/j.ins.2010.11.027. Google Scholar

[12]

B. Farhadinia, Pontryagin's minimum principle for fuzzy optimal control problems, Iran. J. Fuzzy Syst., 11 (2014), 27-43. Google Scholar

[13]

G. S. F. Frederico and D. F. M. Torres, Fractional conservation laws in optimal control theory, Nonlinear Dynam., 53 (2008), 215-222. doi: 10.1007/s11071-007-9309-z. Google Scholar

[14]

Y. Gao and Y.-J. Liu, Adaptive fuzzy optimal control using direct heuristic dynamic programming for chaotic discrete-time system, J. Vib. Control, 22 (2016), 595-603. doi: 10.1177/1077546314534286. Google Scholar

[15]

R. Goetschel, Jr. and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986), 31-43. doi: 10.1016/0165-0114(86)90026-6. Google Scholar

[16]

J. Y. Halpern, Reasoning about Uncertainty MIT Press, Cambridge, MA, 2003. Google Scholar

[17]

R. Hilfer, Applications of Fractional Calculus in Physics World Sci. Publishing, River Edge, NJ, 2000. doi: 10.1142/9789812817747. Google Scholar

[18]

N. V. Hoa, Fuzzy fractional functional differential equations under Caputo gH-differentiability, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 1134-1157. doi: 10.1016/j.cnsns.2014.08.006. Google Scholar

[19]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006. Google Scholar

[20]

C. Li and F. Zeng, Numerical Methods for Fractional Calculus Chapman & Hall/CRC Numerical Analysis and Scientific Computing, CRC, Boca Raton, FL, 2015. Google Scholar

[21]

A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional Calculus of Variations Imp. Coll. Press, London, 2012. doi: 10.1142/p871. Google Scholar

[22]

A. B. Malinowska, T. Odzijewicz and D. F. M. Torres, Advanced Methods in the Fractional Calculus of Variations Springer Briefs in Applied Sciences and Technology, Springer, Cham, 2015. doi: 10.1007/978-3-319-14756-7. Google Scholar

[23]

M. Mazandarani and A. V. Kamyad, Modified fractional Euler method for solving fuzzy fractional initial value problem, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 12-21. doi: 10.1016/j.cnsns.2012.06.008. Google Scholar

[24]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations A Wiley-Interscience Publication, Wiley, New York, 1993. Google Scholar

[25]

S. I. Muslih and D. Baleanu, Formulation of Hamiltonian equations for fractional variational problems, Czechoslovak J. Phys., 55 (2005), 633-642. doi: 10.1007/s10582-005-0067-1. Google Scholar

[26]

S. I. MuslihD. Baleanu and E. Rabei, Hamiltonian formulation of classical fields within Riemann-Liouville fractional derivatives, Phys. Scr., 73 (2006), 436-438. doi: 10.1088/0031-8949/73/5/003. Google Scholar

[27]

M. Najariyan and M. H. Farahi, Optimal control of fuzzy linear controlled system with fuzzy initial conditions, Iran. J. Fuzzy Syst., 10 (2013), 21-35. Google Scholar

[28]

M. Najariyan and M. H. Farahi, A new approach for the optimal fuzzy linear time invariant controlled system with fuzzy coefficients, J. Comput. Appl. Math., 259 (2014), part B, 682-694. doi: 10.1016/j.cam.2013.04.029. Google Scholar

[29]

M. Najariyan and M. H. Farahi, A new approach for solving a class of fuzzy optimal control systems under generalized Hukuhara differentiability, J. Franklin Inst., 352 (2015), 1836-1849. doi: 10.1016/j.jfranklin.2015.01.006. Google Scholar

[30]

E. R. Pinch, Optimal Control and the Calculus of Variations Oxford Science Publications, Oxford Univ. Press, New York, 1993. Google Scholar

[31]

I. Podlubny, Fractional Differential Equations Mathematics in Science and Engineering, 198, Academic Press, San Diego, CA, 1999. Google Scholar

[32]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The mathematical Theory of Optimal Processes Translated from the Russian by K. N. Trirogoff; edited by L. W. Neustadt, Interscience Publishers John Wiley & Sons, Inc. New York, 1962. Google Scholar

[33]

S. PoosehR. Almeida and D. F. M. Torres, Fractional order optimal control problems with free terminal time, J. Ind. Manag. Optim., 10 (2014), 363-381. doi: 10.3934/jimo.2014.10.363. Google Scholar

[34]

S. SalahshourT. Allahviranloo and S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1372-1381. doi: 10.1016/j.cnsns.2011.07.005. Google Scholar

[35]

S. Salahshour, T. Allahviranloo, S. Abbasbandy and D. Baleanu, Existence and uniqueness results for fractional differential equations with uncertainty Adv. Difference Equ. 2012 (2012), 12 pp. doi: 10.1186/1687-1847-2012-112. Google Scholar

[36]

J. SoolakiO. S. Fard and A. H. Borzabadi, Generalized Euler-Lagrange equations for fuzzy variational problems, SeMA Journal, 73 (2016), 131-148. doi: 10.1007/s40324-015-0060-y. Google Scholar

[37]

J. SoolakiO. S. Fard and A. H. Borzabadi, Generalized Euler-Lagrange equations for fuzzy fractional variational calculus, Math. Commun., 21 (2016), 199-218. Google Scholar

[38]

T. Takagi and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, Readings in Fuzzy Sets for Intelligent Systems, (1993), 387-403. doi: 10.1016/B978-1-4832-1450-4.50045-6. Google Scholar

[39]

V. E. Tarasov, Fractional variations for dynamical systems: Hamilton and Lagrange approaches, J. Phys. A, 39 (2006), 8409-8425. doi: 10.1088/0305-4470/39/26/009. Google Scholar

[40]

G. S. Taverna and D. F. M. Torres, Generalized fractional operators for nonstandard Lagrangians, Math. Meth. Appl. Sci., 38 (2015), 1808-1812. doi: 10.1002/mma.3188. Google Scholar

[41]

J. XuZ. Liao and J. J. Nieto, A class of linear differential dynamical systems with fuzzy matrices, J. Math. Anal. Appl., 368 (2010), 54-68. doi: 10.1016/j.jmaa.2009.12.053. Google Scholar

[42]

D. Yang and K.-Y. Cai, Finite-time quantized guaranteed cost fuzzy control for continuous-time nonlinear systems, Expert Systems with Applications, 37 (2010), 6963-6967. doi: 10.1016/j.eswa.2010.03.024. Google Scholar

show all references

References:
[1]

T. AllahviranlooA. Armand and Z. Gouyandeh, Fuzzy fractional differential equations under generalized fuzzy Caputo derivative, J. Intell. Fuzzy Systems, 26 (2014), 1481-1490. Google Scholar

[2]

R. Almeida, S. Pooseh and D. F. M. Torres, Computational Methods in the Fractional Calculus of Variations Imp. Coll. Press, London, 2015. doi: 10.1142/p991. Google Scholar

[3]

S. Arshad and V. Lupulescu, On the fractional differential equations with uncertainty, Nonlinear Anal., 74 (2011), 3685-3693. doi: 10.1016/j.na.2011.02.048. Google Scholar

[4]

D. Baleanu and P. Agrawal, Fractional Hamilton formalism within Caputo's derivative, Czechoslovak J. Phys., 56 (2006), 1087-1092. doi: 10.1007/s10582-006-0406-x. Google Scholar

[5]

B. Bede and L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and Systems, 230 (2013), 119-141. doi: 10.1016/j.fss.2012.10.003. Google Scholar

[6]

J. J. Buckley and T. Feuring, Introduction to fuzzy partial differential equations, Fuzzy Sets and Systems, 105 (1999), 241-248. doi: 10.1016/S0165-0114(98)00323-6. Google Scholar

[7]

R. A. El-Nabulsi and D. F. M. Torres, Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β), Math. Methods Appl. Sci., 30 (2007), 1931-1939. doi: 10.1002/mma.879. Google Scholar

[8]

O. S. Fard and M. Salehi, A survey on fuzzy fractional variational problems, J. Comput. Appl. Math., 271 (2014), 71-82. doi: 10.1016/j.cam.2014.03.019. Google Scholar

[9]

O. S. FardD. F. M. Torres and M. R. Zadeh, A Hukuhara approach to the study of hybrid fuzzy systems on time scales, Appl. Anal. Discrete Math., 10 (2016), 152-167. doi: 10.2298/AADM160311004F. Google Scholar

[10]

O. S. Fard and M. S. Zadeh, Note on ''Necessary optimality conditions for fuzzy variational problems'', J. Adv. Res. Dyn. Control Syst., 4 (2012), 1-9. Google Scholar

[11]

B. Farhadinia, Necessary optimality conditions for fuzzy variational problems, Inform. Sci., 181 (2011), 1348-1357. doi: 10.1016/j.ins.2010.11.027. Google Scholar

[12]

B. Farhadinia, Pontryagin's minimum principle for fuzzy optimal control problems, Iran. J. Fuzzy Syst., 11 (2014), 27-43. Google Scholar

[13]

G. S. F. Frederico and D. F. M. Torres, Fractional conservation laws in optimal control theory, Nonlinear Dynam., 53 (2008), 215-222. doi: 10.1007/s11071-007-9309-z. Google Scholar

[14]

Y. Gao and Y.-J. Liu, Adaptive fuzzy optimal control using direct heuristic dynamic programming for chaotic discrete-time system, J. Vib. Control, 22 (2016), 595-603. doi: 10.1177/1077546314534286. Google Scholar

[15]

R. Goetschel, Jr. and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986), 31-43. doi: 10.1016/0165-0114(86)90026-6. Google Scholar

[16]

J. Y. Halpern, Reasoning about Uncertainty MIT Press, Cambridge, MA, 2003. Google Scholar

[17]

R. Hilfer, Applications of Fractional Calculus in Physics World Sci. Publishing, River Edge, NJ, 2000. doi: 10.1142/9789812817747. Google Scholar

[18]

N. V. Hoa, Fuzzy fractional functional differential equations under Caputo gH-differentiability, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 1134-1157. doi: 10.1016/j.cnsns.2014.08.006. Google Scholar

[19]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006. Google Scholar

[20]

C. Li and F. Zeng, Numerical Methods for Fractional Calculus Chapman & Hall/CRC Numerical Analysis and Scientific Computing, CRC, Boca Raton, FL, 2015. Google Scholar

[21]

A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional Calculus of Variations Imp. Coll. Press, London, 2012. doi: 10.1142/p871. Google Scholar

[22]

A. B. Malinowska, T. Odzijewicz and D. F. M. Torres, Advanced Methods in the Fractional Calculus of Variations Springer Briefs in Applied Sciences and Technology, Springer, Cham, 2015. doi: 10.1007/978-3-319-14756-7. Google Scholar

[23]

M. Mazandarani and A. V. Kamyad, Modified fractional Euler method for solving fuzzy fractional initial value problem, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 12-21. doi: 10.1016/j.cnsns.2012.06.008. Google Scholar

[24]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations A Wiley-Interscience Publication, Wiley, New York, 1993. Google Scholar

[25]

S. I. Muslih and D. Baleanu, Formulation of Hamiltonian equations for fractional variational problems, Czechoslovak J. Phys., 55 (2005), 633-642. doi: 10.1007/s10582-005-0067-1. Google Scholar

[26]

S. I. MuslihD. Baleanu and E. Rabei, Hamiltonian formulation of classical fields within Riemann-Liouville fractional derivatives, Phys. Scr., 73 (2006), 436-438. doi: 10.1088/0031-8949/73/5/003. Google Scholar

[27]

M. Najariyan and M. H. Farahi, Optimal control of fuzzy linear controlled system with fuzzy initial conditions, Iran. J. Fuzzy Syst., 10 (2013), 21-35. Google Scholar

[28]

M. Najariyan and M. H. Farahi, A new approach for the optimal fuzzy linear time invariant controlled system with fuzzy coefficients, J. Comput. Appl. Math., 259 (2014), part B, 682-694. doi: 10.1016/j.cam.2013.04.029. Google Scholar

[29]

M. Najariyan and M. H. Farahi, A new approach for solving a class of fuzzy optimal control systems under generalized Hukuhara differentiability, J. Franklin Inst., 352 (2015), 1836-1849. doi: 10.1016/j.jfranklin.2015.01.006. Google Scholar

[30]

E. R. Pinch, Optimal Control and the Calculus of Variations Oxford Science Publications, Oxford Univ. Press, New York, 1993. Google Scholar

[31]

I. Podlubny, Fractional Differential Equations Mathematics in Science and Engineering, 198, Academic Press, San Diego, CA, 1999. Google Scholar

[32]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The mathematical Theory of Optimal Processes Translated from the Russian by K. N. Trirogoff; edited by L. W. Neustadt, Interscience Publishers John Wiley & Sons, Inc. New York, 1962. Google Scholar

[33]

S. PoosehR. Almeida and D. F. M. Torres, Fractional order optimal control problems with free terminal time, J. Ind. Manag. Optim., 10 (2014), 363-381. doi: 10.3934/jimo.2014.10.363. Google Scholar

[34]

S. SalahshourT. Allahviranloo and S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1372-1381. doi: 10.1016/j.cnsns.2011.07.005. Google Scholar

[35]

S. Salahshour, T. Allahviranloo, S. Abbasbandy and D. Baleanu, Existence and uniqueness results for fractional differential equations with uncertainty Adv. Difference Equ. 2012 (2012), 12 pp. doi: 10.1186/1687-1847-2012-112. Google Scholar

[36]

J. SoolakiO. S. Fard and A. H. Borzabadi, Generalized Euler-Lagrange equations for fuzzy variational problems, SeMA Journal, 73 (2016), 131-148. doi: 10.1007/s40324-015-0060-y. Google Scholar

[37]

J. SoolakiO. S. Fard and A. H. Borzabadi, Generalized Euler-Lagrange equations for fuzzy fractional variational calculus, Math. Commun., 21 (2016), 199-218. Google Scholar

[38]

T. Takagi and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, Readings in Fuzzy Sets for Intelligent Systems, (1993), 387-403. doi: 10.1016/B978-1-4832-1450-4.50045-6. Google Scholar

[39]

V. E. Tarasov, Fractional variations for dynamical systems: Hamilton and Lagrange approaches, J. Phys. A, 39 (2006), 8409-8425. doi: 10.1088/0305-4470/39/26/009. Google Scholar

[40]

G. S. Taverna and D. F. M. Torres, Generalized fractional operators for nonstandard Lagrangians, Math. Meth. Appl. Sci., 38 (2015), 1808-1812. doi: 10.1002/mma.3188. Google Scholar

[41]

J. XuZ. Liao and J. J. Nieto, A class of linear differential dynamical systems with fuzzy matrices, J. Math. Anal. Appl., 368 (2010), 54-68. doi: 10.1016/j.jmaa.2009.12.053. Google Scholar

[42]

D. Yang and K.-Y. Cai, Finite-time quantized guaranteed cost fuzzy control for continuous-time nonlinear systems, Expert Systems with Applications, 37 (2010), 6963-6967. doi: 10.1016/j.eswa.2010.03.024. Google Scholar

Figure 1.  The fuzzy extremals for the fuzzy optimal control problem (12) of Example 1 under $[(1)-gH]_{\beta}^{C}$-differentiability of $\tilde{x}$
Figure 2.  The fuzzy extremals for the fuzzy optimal control problem (12) of Example 1 under $[(2)-gH]$-differentiability of $\tilde{x}$
Figure 3.  The extremals for the crisp optimal control problem (19) of Example 2
Figure 4.  The fuzzy extremals for the fuzzy optimal control problem (18) of Example 2
Figure 5.  The extremals for the crisp optimal control problem (22) of Example 3
[1]

Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861

[2]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[3]

Jiaquan Zhan, Fanyong Meng. Cores and optimal fuzzy communication structures of fuzzy games. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1187-1198. doi: 10.3934/dcdss.2019082

[4]

Yong Zhao, Qishao Lu. Periodic oscillations in a class of fuzzy neural networks under impulsive control. Conference Publications, 2011, 2011 (Special) : 1457-1466. doi: 10.3934/proc.2011.2011.1457

[5]

Aliki D. Muradova, Georgios K. Tairidis, Georgios E. Stavroulakis. Adaptive Neuro-Fuzzy vibration control of a smart plate. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 251-271. doi: 10.3934/naco.2017017

[6]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[7]

Gang Chen, Zaiming Liu, Jingchuan Zhang. Analysis of strategic customer behavior in fuzzy queueing systems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018157

[8]

Xiaodong Liu, Wanquan Liu. The framework of axiomatics fuzzy sets based fuzzy classifiers. Journal of Industrial & Management Optimization, 2008, 4 (3) : 581-609. doi: 10.3934/jimo.2008.4.581

[9]

Yubai Liu, Xueshan Gao, Fuquan Dai. Implementation of Mamdami fuzzy control on a multi-DOF two-wheel inverted pendulum robot. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1251-1266. doi: 10.3934/dcdss.2015.8.1251

[10]

Juan J. Nieto, M. Victoria Otero-Espinar, Rosana Rodríguez-López. Dynamics of the fuzzy logistic family. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 699-717. doi: 10.3934/dcdsb.2010.14.699

[11]

Natalia Skripnik. Averaging of fuzzy integral equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1999-2010. doi: 10.3934/dcdsb.2017118

[12]

Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619

[13]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[14]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[15]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[16]

Erik Kropat, Gerhard Wilhelm Weber. Fuzzy target-environment networks and fuzzy-regression approaches. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 135-155. doi: 10.3934/naco.2018008

[17]

Andrej V. Plotnikov, Tatyana A. Komleva, Liliya I. Plotnikova. The averaging of fuzzy hyperbolic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1987-1998. doi: 10.3934/dcdsb.2017117

[18]

Wei Wang, Xiao-Long Xin. On fuzzy filters of Heyting-algebras. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1611-1619. doi: 10.3934/dcdss.2011.4.1611

[19]

Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099

[20]

Enkhbat Rentsen, J. Zhou, K. L. Teo. A global optimization approach to fractional optimal control. Journal of Industrial & Management Optimization, 2016, 12 (1) : 73-82. doi: 10.3934/jimo.2016.12.73

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (24)
  • HTML views (148)
  • Cited by (1)

[Back to Top]