April  2018, 11(2): 193-212. doi: 10.3934/dcdss.2018012

Quasilinear elliptic equations with measures and multi-valued lower order terms

Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany

* Corresponding author: Christoph Tietz

Received  November 2016 Revised  April 2017 Published  January 2018

Fund Project: The second author is supported by a doctoral studies grant of Saxony-Anhalt.

In this paper, we consider the existence and further qualitative properties of solutions of the Dirichlet problem to quasilinear multi-valued elliptic equations with measures of the form
$Au + G(\cdot,u) \ni f,$
where
$A$
is a second order elliptic operator of Leray-Lions type and
$f\in \mathcal M_b(\Omega)$
is a given Radon measure on a bounded domain
$\Omega\subset \mathbb R^N$
. The lower order term
$s\mapsto G(\cdot,s)$
is assumed to be a multi-valued upper semicontinuous function, which includes Clarke's gradient
$s\mapsto \partial j(\cdot,s)$
of some locally Lipschitz function
$s\mapsto j(\cdot,s)$
as a special case. Our main goals and the novelties of this paper are as follows: First, we develop an existence theory for the above multi-valued elliptic problem with measure right-hand side. Second, we propose concepts of sub-supersolutions for this problem and establish an existence and comparison principle. Third, we topologically characterize the solution set enclosed by sub-supersolutions.
Citation: Siegfried Carl, Christoph Tietz. Quasilinear elliptic equations with measures and multi-valued lower order terms. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 193-212. doi: 10.3934/dcdss.2018012
References:
[1]

J. AppellE. De PascaleH.T. Nguyen and P.P. Zabrejko, Multivalued superpositions, Dissertationes Mathematicae, 345 (1995), 1-97.   Google Scholar

[2]

L. Boccardo, Some nonlinear Dirichlet problems in L1 involving lower order terms in divergence form, Progress in Elliptic and Parabolic Partial Differential Equations (Capri, 1994), 43–57, Pitman Res. Notes Math. Ser. , 350, Longman, Harlow, 1996.  Google Scholar

[3]

L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data, Journal of Functional Analysis, 87 (1989), 149-169.  doi: 10.1016/0022-1236(89)90005-0.  Google Scholar

[4]

S. Carl and V.K. Le, Existence results for hemivariational inequalities with measures, Applicable Analysis, 86 (2007), 735-753.  doi: 10.1080/00036810701397796.  Google Scholar

[5]

S. Carl and V.K. Le, Elliptic inequalities with multi-valued operators: Existence, comparison and related variational-hemivariational type inequalities, Nonlinear Analysis: Theory, Methods & Applications, 121 (2015), 130-152.  doi: 10.1016/j.na.2014.10.033.  Google Scholar

[6]

S. Carl, V. K. Le and D. Motreanu, Nonsmooth Variational Problems and Their Inequalities Springer Monograph in Mathematics, Springer, New York, 2007. doi: 10.1007/978-0-387-46252-3.  Google Scholar

[7]

G. Dal MasoF. MuratL. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data, nnali della Scuola Normale Superiore di Pisa -Classe di Scienze, 28 (1999), 741-808.   Google Scholar

[8]

J. J. Duistermaat and J. A. C. Kolk, Distributions: Theory and Applications Birkhäuser, Boston, 2010. doi: 10.1007/978-0-8176-4675-2.  Google Scholar

[9]

J. Leray and J.-L. Lions, Quelques résultats de Višik sur les problémes elliptiques non linéaires par les méthodes de Minty-Browder, Bulletin de la Société Mathématique de France, 93 (1965), 97-107.   Google Scholar

[10]

Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications Marcel Dekker, Inc. , New York, Basel, Hong Kong, 1995.  Google Scholar

[11]

A. C. Ponce, Selected problems on elliptic equations involving measures, preprint, arXiv:1204.0668v2. Google Scholar

[12]

M. M. Rao, Measure Theory and Integration Marcel Dekker, Inc. , New York, Basel, 2004.  Google Scholar

[13]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations American Mathematical Society, Providence, RI, 1997.  Google Scholar

[14]

I. I. Vrabie, Compactness Methods for Nonlinear Evolutions Pitman Monographs and Surveys in Pure and Applied Mathematikcs, 75 2nd edition, Longman, New York, 1995.  Google Scholar

show all references

References:
[1]

J. AppellE. De PascaleH.T. Nguyen and P.P. Zabrejko, Multivalued superpositions, Dissertationes Mathematicae, 345 (1995), 1-97.   Google Scholar

[2]

L. Boccardo, Some nonlinear Dirichlet problems in L1 involving lower order terms in divergence form, Progress in Elliptic and Parabolic Partial Differential Equations (Capri, 1994), 43–57, Pitman Res. Notes Math. Ser. , 350, Longman, Harlow, 1996.  Google Scholar

[3]

L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data, Journal of Functional Analysis, 87 (1989), 149-169.  doi: 10.1016/0022-1236(89)90005-0.  Google Scholar

[4]

S. Carl and V.K. Le, Existence results for hemivariational inequalities with measures, Applicable Analysis, 86 (2007), 735-753.  doi: 10.1080/00036810701397796.  Google Scholar

[5]

S. Carl and V.K. Le, Elliptic inequalities with multi-valued operators: Existence, comparison and related variational-hemivariational type inequalities, Nonlinear Analysis: Theory, Methods & Applications, 121 (2015), 130-152.  doi: 10.1016/j.na.2014.10.033.  Google Scholar

[6]

S. Carl, V. K. Le and D. Motreanu, Nonsmooth Variational Problems and Their Inequalities Springer Monograph in Mathematics, Springer, New York, 2007. doi: 10.1007/978-0-387-46252-3.  Google Scholar

[7]

G. Dal MasoF. MuratL. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data, nnali della Scuola Normale Superiore di Pisa -Classe di Scienze, 28 (1999), 741-808.   Google Scholar

[8]

J. J. Duistermaat and J. A. C. Kolk, Distributions: Theory and Applications Birkhäuser, Boston, 2010. doi: 10.1007/978-0-8176-4675-2.  Google Scholar

[9]

J. Leray and J.-L. Lions, Quelques résultats de Višik sur les problémes elliptiques non linéaires par les méthodes de Minty-Browder, Bulletin de la Société Mathématique de France, 93 (1965), 97-107.   Google Scholar

[10]

Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications Marcel Dekker, Inc. , New York, Basel, Hong Kong, 1995.  Google Scholar

[11]

A. C. Ponce, Selected problems on elliptic equations involving measures, preprint, arXiv:1204.0668v2. Google Scholar

[12]

M. M. Rao, Measure Theory and Integration Marcel Dekker, Inc. , New York, Basel, 2004.  Google Scholar

[13]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations American Mathematical Society, Providence, RI, 1997.  Google Scholar

[14]

I. I. Vrabie, Compactness Methods for Nonlinear Evolutions Pitman Monographs and Surveys in Pure and Applied Mathematikcs, 75 2nd edition, Longman, New York, 1995.  Google Scholar

[1]

Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021037

[2]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023

[3]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

[4]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026

[5]

Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021009

[6]

Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021104

[7]

Joel Coacalle, Andrew Raich. Compactness of the complex Green operator on non-pseudoconvex CR manifolds. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021061

[8]

Rama Ayoub, Aziz Hamdouni, Dina Razafindralandy. A new Hodge operator in discrete exterior calculus. Application to fluid mechanics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021062

[9]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[10]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[11]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[12]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014

[13]

Fatemeh Abtahi, Zeinab Kamali, Maryam Toutounchi. The BSE concepts for vector-valued Lipschitz algebras. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1171-1186. doi: 10.3934/cpaa.2021011

[14]

Kuei-Hu Chang. A novel risk ranking method based on the single valued neutrosophic set. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021065

[15]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[16]

Yunjuan Jin, Aifang Qu, Hairong Yuan. Radon measure solutions for steady compressible hypersonic-limit Euler flows passing cylindrically symmetric conical bodies. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021048

[17]

Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211

[18]

Yuta Ishii, Kazuhiro Kurata. Existence of multi-peak solutions to the Schnakenberg model with heterogeneity on metric graphs. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021035

[19]

Yongkun Wang, Fengshou He, Xiaobo Deng. Multi-aircraft cooperative path planning for maneuvering target detection. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021050

[20]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (75)
  • HTML views (158)
  • Cited by (2)

Other articles
by authors

[Back to Top]