April  2018, 11(2): 257-277. doi: 10.3934/dcdss.2018014

Positive subharmonic solutions to superlinear ODEs with indefinite weight

Département de Mathématique, Université de Mons, Place du Parc 20, B-7000 Mons, Belgium

Received  January 2016 Revised  April 2017 Published  January 2018

Fund Project: Work partially supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). Progetto di Ricerca 2016: "Problemi differenziali non lineari: esistenza, molteplicità e proprietà qualitative delle soluzioni". It is also partially supported by the project "Existence and asymptotic behavior of solutions to systems of semilinear elliptic partial differential equations" (T.1110.14) of the Fonds de la Recherche Fondamentale Collective, Belgium.

We study the positive subharmonic solutions to the second order nonlinear ordinary differential equation
$\begin{equation*}u'' + q(t) g(u) = 0,\end{equation*}$
where
$g(u)$
has superlinear growth both at zero and at infinity, and
$q(t)$
is a
$T$
-periodic sign-changing weight. Under the sharp mean value condition
$\int_{0}^{T}{q\left( t \right)dt<0}$
, combining Mawhin's coincidence degree theory with the Poincaré-Birkhoff fixed point theorem, we prove that there exist positive subharmonic solutions of order
$k$
for any large integer
$k$
. Moreover, when the negative part of
$q(t)$
is sufficiently large, using a topological approach still based on coincidence degree theory, we obtain the existence of positive subharmonics of order
$k$
for any integer
$k≥2$
.
Citation: Guglielmo Feltrin. Positive subharmonic solutions to superlinear ODEs with indefinite weight. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 257-277. doi: 10.3934/dcdss.2018014
References:
[1]

N. Ackermann, Long-time dynamics in semilinear parabolic problems with autocatalysis, in Recent progress on reaction-diffusion systems and viscosity solutions, World Sci. Publ. , Hackensack, NJ, 2009, 1-30 doi: 10.1142/9789812834744_0001.  Google Scholar

[2]

S. Alama and G. Tarantello, On semilinear elliptic equations with indefinite nonlinearities, Calc. Var. Partial Differential Equations, 1 (1993), 439-475.  doi: 10.1007/BF01206962.  Google Scholar

[3]

H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Differential Equations, 146 (1998), 336-374.  doi: 10.1006/jdeq.1998.3440.  Google Scholar

[4]

M. Barnsley, Fractals Everywhere Academic Press, Inc. , Boston, MA, 1988.  Google Scholar

[5]

V.L. BarutelloA. Boscaggin and G. Verzini, Positive solutions with a complex behavior for superlinear indefinite ODEs on the real line, J. Differential Equations, 259 (2015), 3448-3489.  doi: 10.1016/j.jde.2015.04.026.  Google Scholar

[6]

H. BerestyckiI. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear {L}iouville theorems, Topol. Methods Nonlinear Anal., 4 (1994), 59-78.  doi: 10.12775/TMNA.1994.023.  Google Scholar

[7]

J. Berstel and D. Perrin, The origins of combinatorics on words, European J. Combin., 28 (2007), 996-1022.  doi: 10.1016/j.ejc.2005.07.019.  Google Scholar

[8]

D. BonheureJ.M. Gomes and P. Habets, Multiple positive solutions of superlinear elliptic problems with sign-changing weight, J. Differential Equations, 214 (2005), 36-64.  doi: 10.1016/j.jde.2004.08.009.  Google Scholar

[9]

A. Boscaggin, Positive periodic solutions to nonlinear ODEs with indefinite weight: an overview, Rend. Semin. Mat. Univ. Politec. Torino (to appear). Google Scholar

[10]

A. BoscagginW. Dambrosio and D. Papini, Multiple positive solutions to elliptic boundary blow-up problems, J. Differential Equations, 262 (2017), 5990-6017.  doi: 10.1016/j.jde.2017.02.025.  Google Scholar

[11]

A. Boscaggin and G. Feltrin, Positive subharmonic solutions to nonlinear ODEs with indefinite weight Commun. Contemp. Math. (to appear). doi: 10.1142/S0219199717500213.  Google Scholar

[12]

A. BoscagginG. Feltrin and F. Zanolin, Pairs of positive periodic solutions of nonlinear ODEs with indefinite weight: a topological degree approach for the super-sublinear case, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 449-474.  doi: 10.1017/S0308210515000621.  Google Scholar

[13]

A. Boscaggin, G. Feltrin and F. Zanolin, Positive solutions for super-sublinear indefinite problems: high multiplicity results via coincidence degree Trans. Amer. Math. Soc. (to appear). doi: 10.1090/tran/6992.  Google Scholar

[14]

A. Boscaggin and F. Zanolin, Positive periodic solutions of second order nonlinear equations with indefinite weight: multiplicity results and complex dynamics, J. Differential Equations, 252 (2012), 2922-2950.  doi: 10.1016/j.jde.2011.09.010.  Google Scholar

[15]

A. Boscaggin and F. Zanolin, Subharmonic solutions for nonlinear second order equations in presence of lower and upper solutions, Discrete Contin. Dyn. Syst., 33 (2013), 89-110.  doi: 10.3934/dcds.2013.33.89.  Google Scholar

[16]

K.J. Brown and P. Hess, Stability and uniqueness of positive solutions for a semi-linear elliptic boundary value problem, Differential Integral Equations, 3 (1990), 201-207.   Google Scholar

[17]

G.J. Butler, Rapid oscillation, nonextendability, and the existence of periodic solutions to second order nonlinear ordinary differential equations, J. Differential Equations, 22 (1976), 467-477.  doi: 10.1016/0022-0396(76)90041-3.  Google Scholar

[18]

A. CapiettoM. HenrardJ. Mawhin and F. Zanolin, A continuation approach to some forced superlinear Sturm-Liouville boundary value problems, Topol. Methods Nonlinear Anal., 3 (1994), 81-100.  doi: 10.12775/TMNA.1994.005.  Google Scholar

[19]

A. CapiettoW. Dambrosio and D. Papini, Superlinear indefinite equations on the real line and chaotic dynamics, J. Differential Equations, 181 (2002), 419-438.  doi: 10.1006/jdeq.2001.4080.  Google Scholar

[20]

B.S. Du, The minimal number of periodic orbits of periods guaranteed in Sharkovskiǐ's theorem, Bull. Austral. Math. Soc., 31 (1985), 89-103.  doi: 10.1017/S0004972700002306.  Google Scholar

[21]

D. S. Dummit and R. M. Foote, Abstract Algebra 3rd edition, John Wiley & Sons, Inc. , Hoboken, NJ, 2004.  Google Scholar

[22]

G. Feltrin, Positive Solutions to Indefinite Problems: A Topological Approach Ph. D. thesis, SISSA (Trieste), 2016. Google Scholar

[23]

G. Feltrin and F. Zanolin, Existence of positive solutions in the superlinear case via coincidence degree: The Neumann and the periodic boundary value problems, Adv. Differential Equations, 20 (2015), 937-982.   Google Scholar

[24]

G. Feltrin and F. Zanolin, Multiple positive solutions for a superlinear problem: A topological approach, J. Differential Equations, 259 (2015), 925-963.  doi: 10.1016/j.jde.2015.02.032.  Google Scholar

[25]

G. Feltrin and F. Zanolin, Multiplicity of positive periodic solutions in the superlinear indefinite case via coincidence degree, J. Differential Equations, 262 (2017), 4255-4291.  doi: 10.1016/j.jde.2017.01.009.  Google Scholar

[26]

R. E. Gaines and J. Mawhin, Coincidence Degree, and Nonlinear Differential Equations Lecture Notes in Mathematics, 568, Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[27]

M. GaudenziP. Habets and F. Zanolin, An example of a superlinear problem with multiple positive solutions, Atti Sem. Mat. Fis. Univ. Modena, 51 (2003), 259-272.   Google Scholar

[28]

E.N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.   Google Scholar

[29]

P.M. Girão and J.M. Gomes, Multibump nodal solutions for an indefinite superlinear elliptic problem, J. Differential Equations, 247 (2009), 1001-1012.  doi: 10.1016/j.jde.2009.04.018.  Google Scholar

[30]

R. Gómez-Reñasco and J. López-Gómez, The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction-diffusion equations, J. Differential Equations, 167 (2000), 36-72.  doi: 10.1006/jdeq.2000.3772.  Google Scholar

[31]

P. Hess and T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. Partial Differential Equations, 5 (1980), 999-1030.  doi: 10.1080/03605308008820162.  Google Scholar

[32]

M.R. JoglekarE. Sander and J.A. Yorke, Fixed points indices and period-doubling cascades, J. Fixed Point Theory Appl., 8 (2010), 151-176.  doi: 10.1007/s11784-010-0029-5.  Google Scholar

[33]

T. Kociumaka, J. Radoszewski and W. Rytter, Computing k-th Lyndon word and decoding lexicographically minimal de Bruijn sequence, in Combinatorial Pattern Matching, vol. 8486 of Lecture Notes in Comput. Sci. , Springer, Cham, 2014,202-211. doi: 10.1007/978-3-319-07566-2_21.  Google Scholar

[34]

M. Lothaire, Combinatorics on Words Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1997. doi: 10.1017/CBO9780511566097.  Google Scholar

[35]

P.A. MacMahon, Applications of a theory of permutations in circular procession to the theory of numbers, Proc. London Math. Soc., 23 (1891/92), 305-313.  doi: 10.1112/plms/s1-23.1.305.  Google Scholar

[36]

J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems CBMS Regional Conference Series in Mathematics, 40, American Mathematical Society, Providence, R. I. , 1979.  Google Scholar

[37]

J. Mawhin, Topological degree and boundary value problems for nonlinear differential equations, in Topological Methods for Ordinary Differential Equations (Montecatini Terme, 1991), Lecture Notes in Mathematics, 1537, Springer, Berlin, 1993, 74-142 doi: 10.1007/BFb0085076.  Google Scholar

[38]

J. MawhinC. Rebelo and F. Zanolin, Continuation theorems for Ambrosetti-Prodi type periodic problems, Commun. Contemp. Math., 2 (2000), 87-126.  doi: 10.1142/S0219199700000074.  Google Scholar

[39]

P. Morassi, A note on the construction of coincidence degree, Boll. Un. Mat. Ital. A (7), 10 (1996), 421-433.   Google Scholar

[40]

R.D. Nussbaum, Periodic solutions of some nonlinear, autonomous functional differential equations. Ⅱ, J. Differential Equations, 14 (1973), 360-394.  doi: 10.1016/0022-0396(73)90053-3.  Google Scholar

[41]

R. D. Nussbaum, The Fixed Point Index and Some Applications Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], 94, Presses de l'Université de Montréal, Montreal, QC, 1985.  Google Scholar

[42]

R. D. Nussbaum, The fixed point index and fixed point theorems, in Topological Methods for Ordinary Differential Equations (Montecatini Terme, 1991), Lecture Notes in Math. , 1537, Springer, Berlin, 1993,143-205. doi: 10.1007/BFb0085077.  Google Scholar

[43]

D. Papini and F. Zanolin, A topological approach to superlinear indefinite boundary value problems, Topol. Methods Nonlinear Anal., 15 (2000), 203-233.  doi: 10.12775/TMNA.2000.017.  Google Scholar

[44]

D. Papini and F. Zanolin, On the periodic boundary value problem and chaotic-like dynamics for nonlinear Hill's equations, Adv. Nonlinear Stud., 4 (2004), 71-91.  doi: 10.1515/ans-2004-0105.  Google Scholar

[45]

N. J. A. Sloane, The on-line encyclopedia of integer sequences published electronically at [http://oeis.org, Sequence A001037. Google Scholar

[46]

E. Sovrano, How to get complex dynamics? A note on a topological approach, submitted. Google Scholar

[47]

E. Sovrano, A negative answer to a conjecture arising in the study of selection-migration models in population genetics J. Math. Biol. (to appear). doi: 10.1007/s00285-017-1185-7.  Google Scholar

[48]

S. Terracini and G. Verzini, Oscillating solutions to second-order ODEs with indefinite superlinear nonlinearities, Nonlinearity, 13 (2000), 1501-1514.  doi: 10.1088/0951-7715/13/5/305.  Google Scholar

show all references

References:
[1]

N. Ackermann, Long-time dynamics in semilinear parabolic problems with autocatalysis, in Recent progress on reaction-diffusion systems and viscosity solutions, World Sci. Publ. , Hackensack, NJ, 2009, 1-30 doi: 10.1142/9789812834744_0001.  Google Scholar

[2]

S. Alama and G. Tarantello, On semilinear elliptic equations with indefinite nonlinearities, Calc. Var. Partial Differential Equations, 1 (1993), 439-475.  doi: 10.1007/BF01206962.  Google Scholar

[3]

H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Differential Equations, 146 (1998), 336-374.  doi: 10.1006/jdeq.1998.3440.  Google Scholar

[4]

M. Barnsley, Fractals Everywhere Academic Press, Inc. , Boston, MA, 1988.  Google Scholar

[5]

V.L. BarutelloA. Boscaggin and G. Verzini, Positive solutions with a complex behavior for superlinear indefinite ODEs on the real line, J. Differential Equations, 259 (2015), 3448-3489.  doi: 10.1016/j.jde.2015.04.026.  Google Scholar

[6]

H. BerestyckiI. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear {L}iouville theorems, Topol. Methods Nonlinear Anal., 4 (1994), 59-78.  doi: 10.12775/TMNA.1994.023.  Google Scholar

[7]

J. Berstel and D. Perrin, The origins of combinatorics on words, European J. Combin., 28 (2007), 996-1022.  doi: 10.1016/j.ejc.2005.07.019.  Google Scholar

[8]

D. BonheureJ.M. Gomes and P. Habets, Multiple positive solutions of superlinear elliptic problems with sign-changing weight, J. Differential Equations, 214 (2005), 36-64.  doi: 10.1016/j.jde.2004.08.009.  Google Scholar

[9]

A. Boscaggin, Positive periodic solutions to nonlinear ODEs with indefinite weight: an overview, Rend. Semin. Mat. Univ. Politec. Torino (to appear). Google Scholar

[10]

A. BoscagginW. Dambrosio and D. Papini, Multiple positive solutions to elliptic boundary blow-up problems, J. Differential Equations, 262 (2017), 5990-6017.  doi: 10.1016/j.jde.2017.02.025.  Google Scholar

[11]

A. Boscaggin and G. Feltrin, Positive subharmonic solutions to nonlinear ODEs with indefinite weight Commun. Contemp. Math. (to appear). doi: 10.1142/S0219199717500213.  Google Scholar

[12]

A. BoscagginG. Feltrin and F. Zanolin, Pairs of positive periodic solutions of nonlinear ODEs with indefinite weight: a topological degree approach for the super-sublinear case, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 449-474.  doi: 10.1017/S0308210515000621.  Google Scholar

[13]

A. Boscaggin, G. Feltrin and F. Zanolin, Positive solutions for super-sublinear indefinite problems: high multiplicity results via coincidence degree Trans. Amer. Math. Soc. (to appear). doi: 10.1090/tran/6992.  Google Scholar

[14]

A. Boscaggin and F. Zanolin, Positive periodic solutions of second order nonlinear equations with indefinite weight: multiplicity results and complex dynamics, J. Differential Equations, 252 (2012), 2922-2950.  doi: 10.1016/j.jde.2011.09.010.  Google Scholar

[15]

A. Boscaggin and F. Zanolin, Subharmonic solutions for nonlinear second order equations in presence of lower and upper solutions, Discrete Contin. Dyn. Syst., 33 (2013), 89-110.  doi: 10.3934/dcds.2013.33.89.  Google Scholar

[16]

K.J. Brown and P. Hess, Stability and uniqueness of positive solutions for a semi-linear elliptic boundary value problem, Differential Integral Equations, 3 (1990), 201-207.   Google Scholar

[17]

G.J. Butler, Rapid oscillation, nonextendability, and the existence of periodic solutions to second order nonlinear ordinary differential equations, J. Differential Equations, 22 (1976), 467-477.  doi: 10.1016/0022-0396(76)90041-3.  Google Scholar

[18]

A. CapiettoM. HenrardJ. Mawhin and F. Zanolin, A continuation approach to some forced superlinear Sturm-Liouville boundary value problems, Topol. Methods Nonlinear Anal., 3 (1994), 81-100.  doi: 10.12775/TMNA.1994.005.  Google Scholar

[19]

A. CapiettoW. Dambrosio and D. Papini, Superlinear indefinite equations on the real line and chaotic dynamics, J. Differential Equations, 181 (2002), 419-438.  doi: 10.1006/jdeq.2001.4080.  Google Scholar

[20]

B.S. Du, The minimal number of periodic orbits of periods guaranteed in Sharkovskiǐ's theorem, Bull. Austral. Math. Soc., 31 (1985), 89-103.  doi: 10.1017/S0004972700002306.  Google Scholar

[21]

D. S. Dummit and R. M. Foote, Abstract Algebra 3rd edition, John Wiley & Sons, Inc. , Hoboken, NJ, 2004.  Google Scholar

[22]

G. Feltrin, Positive Solutions to Indefinite Problems: A Topological Approach Ph. D. thesis, SISSA (Trieste), 2016. Google Scholar

[23]

G. Feltrin and F. Zanolin, Existence of positive solutions in the superlinear case via coincidence degree: The Neumann and the periodic boundary value problems, Adv. Differential Equations, 20 (2015), 937-982.   Google Scholar

[24]

G. Feltrin and F. Zanolin, Multiple positive solutions for a superlinear problem: A topological approach, J. Differential Equations, 259 (2015), 925-963.  doi: 10.1016/j.jde.2015.02.032.  Google Scholar

[25]

G. Feltrin and F. Zanolin, Multiplicity of positive periodic solutions in the superlinear indefinite case via coincidence degree, J. Differential Equations, 262 (2017), 4255-4291.  doi: 10.1016/j.jde.2017.01.009.  Google Scholar

[26]

R. E. Gaines and J. Mawhin, Coincidence Degree, and Nonlinear Differential Equations Lecture Notes in Mathematics, 568, Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[27]

M. GaudenziP. Habets and F. Zanolin, An example of a superlinear problem with multiple positive solutions, Atti Sem. Mat. Fis. Univ. Modena, 51 (2003), 259-272.   Google Scholar

[28]

E.N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.   Google Scholar

[29]

P.M. Girão and J.M. Gomes, Multibump nodal solutions for an indefinite superlinear elliptic problem, J. Differential Equations, 247 (2009), 1001-1012.  doi: 10.1016/j.jde.2009.04.018.  Google Scholar

[30]

R. Gómez-Reñasco and J. López-Gómez, The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction-diffusion equations, J. Differential Equations, 167 (2000), 36-72.  doi: 10.1006/jdeq.2000.3772.  Google Scholar

[31]

P. Hess and T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. Partial Differential Equations, 5 (1980), 999-1030.  doi: 10.1080/03605308008820162.  Google Scholar

[32]

M.R. JoglekarE. Sander and J.A. Yorke, Fixed points indices and period-doubling cascades, J. Fixed Point Theory Appl., 8 (2010), 151-176.  doi: 10.1007/s11784-010-0029-5.  Google Scholar

[33]

T. Kociumaka, J. Radoszewski and W. Rytter, Computing k-th Lyndon word and decoding lexicographically minimal de Bruijn sequence, in Combinatorial Pattern Matching, vol. 8486 of Lecture Notes in Comput. Sci. , Springer, Cham, 2014,202-211. doi: 10.1007/978-3-319-07566-2_21.  Google Scholar

[34]

M. Lothaire, Combinatorics on Words Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1997. doi: 10.1017/CBO9780511566097.  Google Scholar

[35]

P.A. MacMahon, Applications of a theory of permutations in circular procession to the theory of numbers, Proc. London Math. Soc., 23 (1891/92), 305-313.  doi: 10.1112/plms/s1-23.1.305.  Google Scholar

[36]

J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems CBMS Regional Conference Series in Mathematics, 40, American Mathematical Society, Providence, R. I. , 1979.  Google Scholar

[37]

J. Mawhin, Topological degree and boundary value problems for nonlinear differential equations, in Topological Methods for Ordinary Differential Equations (Montecatini Terme, 1991), Lecture Notes in Mathematics, 1537, Springer, Berlin, 1993, 74-142 doi: 10.1007/BFb0085076.  Google Scholar

[38]

J. MawhinC. Rebelo and F. Zanolin, Continuation theorems for Ambrosetti-Prodi type periodic problems, Commun. Contemp. Math., 2 (2000), 87-126.  doi: 10.1142/S0219199700000074.  Google Scholar

[39]

P. Morassi, A note on the construction of coincidence degree, Boll. Un. Mat. Ital. A (7), 10 (1996), 421-433.   Google Scholar

[40]

R.D. Nussbaum, Periodic solutions of some nonlinear, autonomous functional differential equations. Ⅱ, J. Differential Equations, 14 (1973), 360-394.  doi: 10.1016/0022-0396(73)90053-3.  Google Scholar

[41]

R. D. Nussbaum, The Fixed Point Index and Some Applications Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], 94, Presses de l'Université de Montréal, Montreal, QC, 1985.  Google Scholar

[42]

R. D. Nussbaum, The fixed point index and fixed point theorems, in Topological Methods for Ordinary Differential Equations (Montecatini Terme, 1991), Lecture Notes in Math. , 1537, Springer, Berlin, 1993,143-205. doi: 10.1007/BFb0085077.  Google Scholar

[43]

D. Papini and F. Zanolin, A topological approach to superlinear indefinite boundary value problems, Topol. Methods Nonlinear Anal., 15 (2000), 203-233.  doi: 10.12775/TMNA.2000.017.  Google Scholar

[44]

D. Papini and F. Zanolin, On the periodic boundary value problem and chaotic-like dynamics for nonlinear Hill's equations, Adv. Nonlinear Stud., 4 (2004), 71-91.  doi: 10.1515/ans-2004-0105.  Google Scholar

[45]

N. J. A. Sloane, The on-line encyclopedia of integer sequences published electronically at [http://oeis.org, Sequence A001037. Google Scholar

[46]

E. Sovrano, How to get complex dynamics? A note on a topological approach, submitted. Google Scholar

[47]

E. Sovrano, A negative answer to a conjecture arising in the study of selection-migration models in population genetics J. Math. Biol. (to appear). doi: 10.1007/s00285-017-1185-7.  Google Scholar

[48]

S. Terracini and G. Verzini, Oscillating solutions to second-order ODEs with indefinite superlinear nonlinearities, Nonlinearity, 13 (2000), 1501-1514.  doi: 10.1088/0951-7715/13/5/305.  Google Scholar

Figure 1.  The figure shows an example of multiple positive solutions for the $T$-periodic boundary value problem associated with $(\mathscr{E}_{\mu})$. For this numerical simulation we have chosen $a(t) = \sin(6\pi t)$ for $t\in\mathopen{[}0, 1\mathclose{]}$, $\mu = 10$ and $g(s) = \max\{0,400\, s\arctan|s|\}$. Notice that the weight function $a(t)$ has $3$ positive humps. We show the graphs of the $7$ positive $T$-periodic solutions of $(\mathscr{E}_{\mu})$. We stress that $g(s)/s\not\to+\infty$ as $s\to+\infty$ (contrary to what is assumed in $(g_{s})$), indeed Theorem 2.2 is also valid assuming only that $g(s)/s$ is sufficiently large as $s\to+\infty$, as observed in Remark 2.1
Figure 2.  Using a numerical simulation we have studied the $2$-periodic solutions of equation $(\mathscr{E}_{\mu})$ where $a(t) = \sin(t)$, $T=2\pi$, $\mu = 6$ and $g(s) = 100(s^{2}+s^{3})$. In the upper part, the figure shows the graph of the weight $q(t)=a_{\mu}(t)$; while in the lower part, it shows the graphs of three $2T$-periodic positive solutions, in accordance with Theorem 4.1. The three solutions are in correspondence with the three strings $(1, 0)$, $(0, 1)$ and $(1, 1)$, respectively, as stated in Theorem 4.1. The first two solutions are subharmonic solutions of order $2$ and the third one is a $1$-periodic solution. As subharmonic solutions of order $2$, we consider only the first one, since the second one is a translation by $1$ of the first solution
Figure 3.  The figure shows the aperiodic necklaces made by arranging $k$ beads whose color is chosen from a list of 2 colors, when $k\in\{2, 3, 4\}$. The aperiodic necklaces depicted in the figure correspond to the following Lyndon words on the alphabet $\{a, b\}$: $ab$ for $k=2$, $abb$ and $aab$ for $k=3$, $abbb$, $aabb$ and $aaab$ for $k=4$ (which are the minimal elements in the class of equivalence in the lexicographic ordering). For instance, for $k = 4$, note that the string $abab$ is not acceptable as it represents a sequence of period $2$ and the string $bbaa$ is already counted as $aabb$
[1]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[2]

Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021058

[3]

Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063

[4]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[5]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

[6]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[7]

Peng Chen, Xiaochun Liu. Positive solutions for Choquard equation in exterior domains. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021065

[8]

Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021058

[9]

Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151

[10]

Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021083

[11]

Lidan Wang, Lihe Wang, Chunqin Zhou. Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1241-1261. doi: 10.3934/cpaa.2021019

[12]

Claudianor O. Alves, Giovany M. Figueiredo, Riccardo Molle. Multiple positive bound state solutions for a critical Choquard equation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021061

[13]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404

[14]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[15]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[16]

Qian Cao, Yongli Cai, Yong Luo. Nonconstant positive solutions to the ratio-dependent predator-prey system with prey-taxis in one dimension. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021095

[17]

Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021029

[18]

Fangyi Qin, Jun Wang, Jing Yang. Infinitely many positive solutions for Schrödinger-poisson systems with nonsymmetry potentials. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021054

[19]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[20]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (74)
  • HTML views (151)
  • Cited by (0)

Other articles
by authors

[Back to Top]