April 2018, 11(2): 345-355. doi: 10.3934/dcdss.2018019

Ambrosetti-Prodi type result to a Neumann problem via a topological approach

Department of Mathematics, Computer Science and Physics, University of Udine, via delle Scienze 206,33100 Udine, Italy

Received  February 2017 Revised  May 2017 Published  January 2018

Fund Project: Work partially supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). Progetto di Ricerca 2016: "Problemi differenziali non lineari: esistenza, molteplicità e proprietà qualitative delle soluzioni"

We prove an Ambrosetti-Prodi type result for a Neumann problem associated to the equation $u''+f(x, u(x))=μ$ when the nonlinearity has the following form:$f(x, u):=a(x)g(u)-p(x)$. The assumptions considered generalize the classical one, $f(x, u)\to+∞$ as $|u|\to+∞$, without requiring any uniformity condition in $x$. The multiplicity result which characterizes these kind of problems will be proved by means of the shooting method.

Citation: Elisa Sovrano. Ambrosetti-Prodi type result to a Neumann problem via a topological approach. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 345-355. doi: 10.3934/dcdss.2018019
References:
[1]

H. Amann and P. Hess, A multiplicity result for a class of elliptic boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A, 84 (1979), 145-151. doi: 10.1017/S0308210500017017.

[2]

A. Ambrosetti, Observations on global inversion theorems, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 22 (2011), 3-15. doi: 10.4171/RLM/584.

[3]

A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl. (4), 93 (1972), 231-246. doi: 10.1007/BF02412022.

[4]

A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis vol. 34 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1993.

[5]

H. Berestycki and P. L. Lions, Sharp existence results for a class of semilinear elliptic problems, Bol. Soc. Brasil. Mat., 12 (1981), 9-19. doi: 10.1007/BF02588317.

[6]

M. S. Berger and E. Podolak, On the solutions of a nonlinear Dirichlet problem, Indiana Univ. Math. J., 24 (1974/75), 837-846. doi: 10.1512/iumj.1975.24.24066.

[7]

E. N. Dancer, On the ranges of certain weakly nonlinear elliptic partial differential equations, J. Math. Pures Appl. (9), 57 (1978), 351-366.

[8]

C. De Coster and P. Habets, Two-point Boundary Value Problems: Lower and Upper Solutions vol. 205 of Mathematics in Science and Engineering, Elsevier B. V. , Amsterdam, 2006.

[9]

D. G. de Figueiredo, Lectures on Boundary Value Problems of Ambrosetti-Prodi Type Atas do 12o Seminario Brasileiro de Análise, São Paulo, 1980.

[10]

C. FabryJ. Mawhin and M. N. Nkashama, A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations, Bull. London Math. Soc., 18 (1986), 173-180. doi: 10.1112/blms/18.2.173.

[11]

A. Fonda and A. Sfecci, On a singular periodic Ambrosetti-Prodi problem, Nonlinear Anal., 149 (2017), 146-155. doi: 10.1016/j.na.2016.10.018.

[12]

S. Fučík, Boundary value problems with jumping nonlinearities, Časopis Pěst. Mat., 101 (1976), 69-87.

[13]

J. L. Kazdan and F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., 28 (1975), 567-597. doi: 10.1002/cpa.3160280502.

[14]

A. Manes and A. M. Micheletti, Un'estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital. (4), 7 (1973), 285-301.

[15]

J. Mawhin, Ambrosetti-Prodi type results in nonlinear boundary value problems, in Differential equations and mathematical physics (Birmingham, Ala. , 1986), vol. 1285 of Lecture Notes in Math. , Springer, Berlin, 1987,290-313. doi: 10.1007/BFb0080609.

[16]

J. Mawhin, The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian, J. Eur. Math. Soc. (JEMS), 8 (2006), 375-388. doi: 10.4171/JEMS/58.

[17]

R. Ortega, Stability and index of periodic solutions of an equation of Duffing type, Boll. Un. Mat. Ital. B (7), 3 (1989), 533-546.

[18]

R. Ortega, Stability of a periodic problem of Ambrosetti-Prodi type, Differential Integral Equations, 3 (1990), 275-284.

[19]

A. E. Presoto and F. O. de Paiva, A Neumann problem of Ambrosetti-Prodi type, J. Fixed Point Theory Appl., 18 (2016), 189-200. doi: 10.1007/s11784-015-0277-5.

[20]

I. Rachůnková, On the number of solutions of the Neumann problem for the ordinary second order differential equation, Ann. Math. Sil., 7 (1993), 79-87.

[21]

E. Sovrano and F. Zanolin, The Ambrosetti-Prodi periodic problem: Different routes to complex dynamics, Dynam. Systems Appl. (to appear).

show all references

References:
[1]

H. Amann and P. Hess, A multiplicity result for a class of elliptic boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A, 84 (1979), 145-151. doi: 10.1017/S0308210500017017.

[2]

A. Ambrosetti, Observations on global inversion theorems, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 22 (2011), 3-15. doi: 10.4171/RLM/584.

[3]

A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl. (4), 93 (1972), 231-246. doi: 10.1007/BF02412022.

[4]

A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis vol. 34 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1993.

[5]

H. Berestycki and P. L. Lions, Sharp existence results for a class of semilinear elliptic problems, Bol. Soc. Brasil. Mat., 12 (1981), 9-19. doi: 10.1007/BF02588317.

[6]

M. S. Berger and E. Podolak, On the solutions of a nonlinear Dirichlet problem, Indiana Univ. Math. J., 24 (1974/75), 837-846. doi: 10.1512/iumj.1975.24.24066.

[7]

E. N. Dancer, On the ranges of certain weakly nonlinear elliptic partial differential equations, J. Math. Pures Appl. (9), 57 (1978), 351-366.

[8]

C. De Coster and P. Habets, Two-point Boundary Value Problems: Lower and Upper Solutions vol. 205 of Mathematics in Science and Engineering, Elsevier B. V. , Amsterdam, 2006.

[9]

D. G. de Figueiredo, Lectures on Boundary Value Problems of Ambrosetti-Prodi Type Atas do 12o Seminario Brasileiro de Análise, São Paulo, 1980.

[10]

C. FabryJ. Mawhin and M. N. Nkashama, A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations, Bull. London Math. Soc., 18 (1986), 173-180. doi: 10.1112/blms/18.2.173.

[11]

A. Fonda and A. Sfecci, On a singular periodic Ambrosetti-Prodi problem, Nonlinear Anal., 149 (2017), 146-155. doi: 10.1016/j.na.2016.10.018.

[12]

S. Fučík, Boundary value problems with jumping nonlinearities, Časopis Pěst. Mat., 101 (1976), 69-87.

[13]

J. L. Kazdan and F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., 28 (1975), 567-597. doi: 10.1002/cpa.3160280502.

[14]

A. Manes and A. M. Micheletti, Un'estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital. (4), 7 (1973), 285-301.

[15]

J. Mawhin, Ambrosetti-Prodi type results in nonlinear boundary value problems, in Differential equations and mathematical physics (Birmingham, Ala. , 1986), vol. 1285 of Lecture Notes in Math. , Springer, Berlin, 1987,290-313. doi: 10.1007/BFb0080609.

[16]

J. Mawhin, The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian, J. Eur. Math. Soc. (JEMS), 8 (2006), 375-388. doi: 10.4171/JEMS/58.

[17]

R. Ortega, Stability and index of periodic solutions of an equation of Duffing type, Boll. Un. Mat. Ital. B (7), 3 (1989), 533-546.

[18]

R. Ortega, Stability of a periodic problem of Ambrosetti-Prodi type, Differential Integral Equations, 3 (1990), 275-284.

[19]

A. E. Presoto and F. O. de Paiva, A Neumann problem of Ambrosetti-Prodi type, J. Fixed Point Theory Appl., 18 (2016), 189-200. doi: 10.1007/s11784-015-0277-5.

[20]

I. Rachůnková, On the number of solutions of the Neumann problem for the ordinary second order differential equation, Ann. Math. Sil., 7 (1993), 79-87.

[21]

E. Sovrano and F. Zanolin, The Ambrosetti-Prodi periodic problem: Different routes to complex dynamics, Dynam. Systems Appl. (to appear).

Figure 1.  Numerical simulations for the Neumann problem $(\mathcal{P}_{\mu})$ defined as in Example
[1]

F. R. Pereira. Multiple solutions for a class of Ambrosetti-Prodi type problems for systems involving critical Sobolev exponents. Communications on Pure & Applied Analysis, 2008, 7 (2) : 355-372. doi: 10.3934/cpaa.2008.7.355

[2]

Patrick Winkert. Multiplicity results for a class of elliptic problems with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (2) : 785-802. doi: 10.3934/cpaa.2013.12.785

[3]

Inara Yermachenko, Felix Sadyrbaev. Types of solutions and multiplicity results for second order nonlinear boundary value problems. Conference Publications, 2007, 2007 (Special) : 1061-1069. doi: 10.3934/proc.2007.2007.1061

[4]

Antonio Iannizzotto, Nikolaos S. Papageorgiou. Existence and multiplicity results for resonant fractional boundary value problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 511-532. doi: 10.3934/dcdss.2018028

[5]

Eunkyoung Ko, Eun Kyoung Lee, R. Shivaji. Multiplicity results for classes of singular problems on an exterior domain. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5153-5166. doi: 10.3934/dcds.2013.33.5153

[6]

Giuseppina Barletta, Gabriele Bonanno. Multiplicity results to elliptic problems in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 715-727. doi: 10.3934/dcdss.2012.5.715

[7]

Monica Lazzo. Existence and multiplicity results for a class of nonlinear elliptic problems in $\mathbb(R)^N$. Conference Publications, 2003, 2003 (Special) : 526-535. doi: 10.3934/proc.2003.2003.526

[8]

Yosra Boukari, Houssem Haddar. The factorization method applied to cracks with impedance boundary conditions. Inverse Problems & Imaging, 2013, 7 (4) : 1123-1138. doi: 10.3934/ipi.2013.7.1123

[9]

B. Abdellaoui, E. Colorado, I. Peral. Existence and nonexistence results for a class of parabolic equations with mixed boundary conditions. Communications on Pure & Applied Analysis, 2006, 5 (1) : 29-54. doi: 10.3934/cpaa.2006.5.29

[10]

Alexandre Nolasco de Carvalho, Marcos Roberto Teixeira Primo. Spatial homogeneity in parabolic problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2004, 3 (4) : 637-651. doi: 10.3934/cpaa.2004.3.637

[11]

Giuseppe Maria Coclite, Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Continuous dependence in hyperbolic problems with Wentzell boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (1) : 419-433. doi: 10.3934/cpaa.2014.13.419

[12]

J. Giacomoni, K. Sreeandh. Multiplicity results for a singular and quazilinear equation. Conference Publications, 2007, 2007 (Special) : 429-435. doi: 10.3934/proc.2007.2007.429

[13]

Marek Galewski, Shapour Heidarkhani, Amjad Salari. Multiplicity results for discrete anisotropic equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 203-218. doi: 10.3934/dcdsb.2018014

[14]

Davide Guidetti. Parabolic problems with general Wentzell boundary conditions and diffusion on the boundary. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1401-1417. doi: 10.3934/cpaa.2016.15.1401

[15]

Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2004, 3 (4) : 729-756. doi: 10.3934/cpaa.2004.3.729

[16]

Frederic Rousset. The residual boundary conditions coming from the real vanishing viscosity method. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 605-625. doi: 10.3934/dcds.2002.8.606

[17]

Alejandro Allendes, Alexander Quaas. Multiplicity results for extremal operators through bifurcation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 51-65. doi: 10.3934/dcds.2011.29.51

[18]

Julián López-Gómez, Paul H. Rabinowitz. The effects of spatial heterogeneities on some multiplicity results. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 941-952. doi: 10.3934/dcds.2016.36.941

[19]

Fábio R. Pereira. Multiplicity results for fractional systems crossing high eigenvalues. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2069-2088. doi: 10.3934/cpaa.2017102

[20]

Davide Guidetti. Classical solutions to quasilinear parabolic problems with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 717-736. doi: 10.3934/dcdss.2016024

2016 Impact Factor: 0.781

Metrics

  • PDF downloads (10)
  • HTML views (86)
  • Cited by (0)

Other articles
by authors

[Back to Top]