# American Institute of Mathematical Sciences

October  2018, 11(5): 825-843. doi: 10.3934/dcdss.2018051

## A flame propagation model on a network with application to a blocking problem

 1 Dip. di Scienze di Base e Applicate per l'Ingegneria, "Sapienza" Università di Roma, via Scarpa 16, 00161 Roma, Italy 2 Dipartimento di Matematica, "Sapienza" Università di Roma, p.le A. Moro 5, 00185 Roma, Italy 3 Dip. di Ingegneria dell'Informazione, Università di Padova, via Gradenigo 6/B, 35131 Padova, Italy

* Corresponding author

Received  February 2017 Revised  August 2017 Published  June 2018

We consider the Cauchy problem
 $\left\{ \begin{array}{*{35}{l}} {{\partial }_{t}}u+H(x,Du) = 0&(x,t)\in \Gamma \times (0,T) \\ u(x,0) = {{u}_{0}}(x)&x\in \Gamma \\\end{array} \right.$
where
 $\Gamma$
is a network and
 $H$
is a positive homogeneous Hamiltonian which may change from edge to edge. In the first part of the paper, we prove that the Hopf-Lax type formula gives the (unique) viscosity solution of the problem. In the latter part of the paper we study a flame propagation model in a network and an optimal strategy to block a fire breaking up in some part of a pipeline; some numerical simulations are provided.
Citation: Fabio Camilli, Elisabetta Carlini, Claudio Marchi. A flame propagation model on a network with application to a blocking problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 825-843. doi: 10.3934/dcdss.2018051
##### References:

show all references

##### References:
Test1. Graph structure where $R_0$ is represented by the circle marker and the vertices by the rhombus markers (Top Left). Color map of the time $u_h(x)$ at which a node $x$ get burnt, computed by (29), (Top Right) and its 3D view (Bottom).
Test1. Time to reach a point $x$ from the operation center $x_0$ (circle marker) and set of the admissible nodes $V^h_{ad}$ (square marker). 2D view (Left) and 3D view (Right).
Test1. Optimal blocking strategy $\sigma ^h_{opt}$ (square marker), preserved network region (cross marker) and minimum burnt network region (continuum line) starting from $R_0$ (circle marker).
Test2. Graph structure where $R_0$ is represented by the circle markers and the vertices by the rhombus markers (Top Left). Color map of the time $u_h(x)$ at which a node $x$ get burnt, computed by (29) (Top Right), and its 3D view (Bottom).
Test2. Time to reach a point $x$ from the operation center $x_0$ (circle marker) and set of the admissible nodes $V^h_{ad}$ (square markers). 2D view(Left) and 3D view (Right).
Test2. Optimal blocking strategy $\sigma ^h_{opt}$ (square markers), preserved network region (thin line) and minimum burnt network region (thick line) starting from $R_0$ (circle markers).
Test3. Graph structure where $R_0$ is represented by the circle markers and the vertices by the rhombus markers (Top Left). Color map of the time $u_h(x)$ at which a node $x$ get burnt, computed by (29), (Top Right) and its 3D view (Bottom).
Test3. Time to reach a point $x$ from the operation center $x_0$ (circle marker) and set of the admissible nodes $V^h_{ad}$ (square markers). 2D view(Left) and 3D view (Right).
Test3. Optimal blocking strategy $\sigma ^h_{opt}$ (square marker), preserved network region (thin line) and minimum burnt network region (thick line) starting from $R_0$ (circle marker).
 [1] Federica Dragoni. Metric Hopf-Lax formula with semicontinuous data. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 713-729. doi: 10.3934/dcds.2007.17.713 [2] Juan Pablo Rincón-Zapatero. Hopf-Lax formula for variational problems with non-constant discount. Journal of Geometric Mechanics, 2009, 1 (3) : 357-367. doi: 10.3934/jgm.2009.1.357 [3] Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295 [4] David McCaffrey. A representational formula for variational solutions to Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1205-1215. doi: 10.3934/cpaa.2012.11.1205 [5] Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461 [6] Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513 [7] María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207 [8] Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441 [9] Mihai Bostan, Gawtum Namah. Time periodic viscosity solutions of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2007, 6 (2) : 389-410. doi: 10.3934/cpaa.2007.6.389 [10] Olga Bernardi, Franco Cardin. Minimax and viscosity solutions of Hamilton-Jacobi equations in the convex case. Communications on Pure & Applied Analysis, 2006, 5 (4) : 793-812. doi: 10.3934/cpaa.2006.5.793 [11] Kaizhi Wang, Jun Yan. Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1649-1659. doi: 10.3934/dcds.2016.36.1649 [12] Steven Richardson, Song Wang. The viscosity approximation to the Hamilton-Jacobi-Bellman equation in optimal feedback control: Upper bounds for extended domains. Journal of Industrial & Management Optimization, 2010, 6 (1) : 161-175. doi: 10.3934/jimo.2010.6.161 [13] Yoshikazu Giga, Przemysław Górka, Piotr Rybka. Nonlocal spatially inhomogeneous Hamilton-Jacobi equation with unusual free boundary. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 493-519. doi: 10.3934/dcds.2010.26.493 [14] Yuxiang Li. Stabilization towards the steady state for a viscous Hamilton-Jacobi equation. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1917-1924. doi: 10.3934/cpaa.2009.8.1917 [15] Alexander Quaas, Andrei Rodríguez. Analysis of the attainment of boundary conditions for a nonlocal diffusive Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5221-5243. doi: 10.3934/dcds.2018231 [16] Renato Iturriaga, Héctor Sánchez-Morgado. Limit of the infinite horizon discounted Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 623-635. doi: 10.3934/dcdsb.2011.15.623 [17] Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations & Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026 [18] Eddaly Guerra, Héctor Sánchez-Morgado. Vanishing viscosity limits for space-time periodic Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 331-346. doi: 10.3934/cpaa.2014.13.331 [19] Kai Zhao, Wei Cheng. On the vanishing contact structure for viscosity solutions of contact type Hamilton-Jacobi equations I: Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4345-4358. doi: 10.3934/dcds.2019176 [20] Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363

2018 Impact Factor: 0.545