# American Institute of Mathematical Sciences

December  2018, 11(6): 1201-1218. doi: 10.3934/dcdss.2018068

## On ${\mathcal L}^1$ limit solutions in impulsive control

 Dipartimento di Matematica "Tullio Levi-Civita", Università di Padova, Via Trieste, 63, Padova 35121, Italy

* Corresponding author: Monica Motta

Received  June 2017 Revised  October 2017 Published  June 2018

Fund Project: This research is partially supported by the INdAM-GNAMPA Project 2017 "Optimal impulsive control: higher order necessary conditions and gap phenomena"; and by the Padova University grant PRAT 2015 "Control of dynamics with reactive constraints".

We consider a nonlinear control system depending on two controls $u$ and $v$, with dynamics affine in the (unbounded) derivative of $u$, and $v$ appearing initially only in the drift term. Recently, motivated by applications to optimization problems lacking coercivity, Aronna and Rampazzo [1] proposed a notion of generalized solution $x$ for this system, called limit solution, associated to measurable $u$ and $v$, and with $u$ of possibly unbounded variation in $[0, T]$. As shown in [1], when $u$ and $x$ have bounded variation, such a solution (called in this case BV simple limit solution) coincides with the most used graph completion solution (see e.g. Rishel [25], Warga [27] and Bressan and Rampazzo [8]). In [24] we extended this correspondence to BV$_{loc}$ inputs $u$ and trajectories (with bounded variation just on any $[0, t]$ with $t<T$). Here, starting with an example of optimal control where the minimum does not exist in the class of limit solutions, we propose a notion of extended limit solution $x$, for which such a minimum exists. As a first result, we prove that extended BV (respectively, BV$_{loc}$) simple limit solutions and BV (respectively, BV$_{loc}$) simple limit solutions coincide. Then we consider dynamics where the ordinary control $v$ also appears in the non-drift terms. For the associated system we prove that, in the BV case, extended limit solutions coincide with graph completion solutions.

Citation: Monica Motta, Caterina Sartori. On ${\mathcal L}^1$ limit solutions in impulsive control. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1201-1218. doi: 10.3934/dcdss.2018068
##### References:
 [1] M. S. Aronna and F. Rampazzo, ${\mathcal L}^1$ limit solutions for control systems, J. Differential Equations, 258 (2015), 954-979.  doi: 10.1016/j.jde.2014.10.013.  Google Scholar [2] M. S. Aronna, M. Motta and F. Rampazzo, Infimum gaps for limit solutions, Set-Valued Var. Anal., 23 (2015), 3-22.  doi: 10.1007/s11228-014-0296-1.  Google Scholar [3] A. Arutyunov, D. Karamzin and F. Pereira, On a generalization of the impulsive control concept: Controlling system jumps, Discrete Contin. Dyn. Syst., 29 (2011), 403-415.  doi: 10.3934/dcds.2011.29.403.  Google Scholar [4] J.-P. Aubin, Impulse Differential Equations and Hybrid Systems: A Viability Approach, Lecture Notes. University of California, Berkeley, 2000. Google Scholar [5] E. Barron and H. Ishii, The Bellman equation for minimizing the maximum cost, Nonlinear Anal., 13 (1989), 1067-1090.  doi: 10.1016/0362-546X(89)90096-5.  Google Scholar [6] A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, AIMS Series on Applied Mathematics, 2. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2007.  Google Scholar [7] A. Bressan and F. Rampazzo, Moving constraints as stabilizing controls in classical mechanics, Arch. Ration. Mech. Anal., 196 (2010), 97-141.  doi: 10.1007/s00205-009-0237-6.  Google Scholar [8] A. Bressan and F. Rampazzo, On differential systems with vector-valued impulsive controls, Boll. Un. Mat. Ital. B, 2 (1988), 641-656.   Google Scholar [9] A. Bressan and F. Rampazzo, Impulsive control systems with commutative vector fields, J. Optim. Theory Appl., 71 (1991), 67-83.  doi: 10.1007/BF00940040.  Google Scholar [10] A. Bressan and F. Rampazzo, Impulsive control systems without commutativity assumptions, J. Optim. Theory Appl., 81 (1994), 435-457.  doi: 10.1007/BF02193094.  Google Scholar [11] N. Falkner and G. Teschl, On the substitution rule for Lebesgue-Stieltjes integrals, Expo. Math., 30 (2012), 412-418.  doi: 10.1016/j.exmath.2012.09.002.  Google Scholar [12] S. L. Fraga, R. Gomes and F. L. Pereira, An impulsive framework for the control of hybrid systems, in Proc. 46 IEEE Conf. Decision Control, (2007), 5444-5449.  doi: 10.1109/CDC.2007.4434895.  Google Scholar [13] E. Goncharova and M. Staritsyn, Optimization of Measure-Driven Hybrid Systems, J. Optim. Theory Appl., 153 (2012), 139-156.  doi: 10.1007/s10957-011-9944-x.  Google Scholar [14] M. Guerra and A. Sarychev, Fréchet generalized trajectories and minimizers for variational problems of low coercivity, J. Dyn. Control Syst., 21 (2015), 351-377.  doi: 10.1007/s10883-014-9231-x.  Google Scholar [15] W. Haddad, V. Chellaboina and S. Nersesov, Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control, Princeton University Press, Princeton, 2006. doi: 10.1515/9781400865246.  Google Scholar [16] D. Y. Karamzin, V. A. de Oliveira, F. L. Pereira and G. N. Silva, On the properness of an impulsive control extension of dynamic optimization problems, ESAIM Control Optim. Calc. Var., 21 (2015), 857-875.  doi: 10.1051/cocv/2014053.  Google Scholar [17] A. Kurzhanski and P. Tochilin, Impulse controls in models of hybrid systems, Differential Equations, 45 (2009), 731-742.  doi: 10.1134/S0012266109050127.  Google Scholar [18] T. Lyons and Z. Qian, System Control and Rough Paths, Oxford Mathematical Monographs. Oxford Science Publications. Oxford University Press, Oxford, 2002. doi: 10.1093/acprof:oso/9780198506485.001.0001.  Google Scholar [19] B. Miller and E. Y. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems, Kluwer Academic/Plenum Publishers, New York, 2003. doi: 10.1007/978-1-4615-0095-7.  Google Scholar [20] M. Motta and F. Rampazzo, Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls, Differential Integral Equations, 8 (1995), 269-288.   Google Scholar [21] M. Motta and F. Rampazzo, Dynamic programming for nonlinear systems driven by ordinary and impulsive controls, SIAM J. Control Optim., 34 (1996), 199-225.  doi: 10.1137/S036301299325493X.  Google Scholar [22] M. Motta and C. Sartori, Uniqueness results for boundary value problems arising from finite fuel and other singular and unbounded stochastic control problems, Discrete Contin. Dyn. Syst., 21 (2008), 513-535.  doi: 10.3934/dcds.2008.21.513.  Google Scholar [23] M. Motta and C. Sartori, On asymptotic exit-time control problems lacking coercivity, ESAIM Control Optim. Calc. Var., 20 (2014), 957-982.  doi: 10.1051/cocv/2014003.  Google Scholar [24] M. Motta and C. Sartori, Lack of BV bounds for impulsive control systems, J. Math. Anal. Appl., 461 (2018), 422-450.   Google Scholar [25] R. W. Rishel, An extended Pontryagin principle for control systems whose control laws contain measures, J. Soc. Indust. Appl. Math. Ser. A Control, 3 (1965), 191-205.  doi: 10.1137/0303016.  Google Scholar [26] G. Silva and R. Vinter, Measure driven differential inclusions, J. Math. Anal. Appl., 202 (1996), 727-746.  doi: 10.1006/jmaa.1996.0344.  Google Scholar [27] J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972.  Google Scholar [28] H. Whitney, Functions differentiable on the boundaries of regions, Ann. of Math., 35 (1934), 482-485.  doi: 10.2307/1968745.  Google Scholar [29] P. Wolenski and S. Žabić, A sampling method and approximation results for impulsive systems, SIAM J. Control Optim., 46 (2007), 983-998.  doi: 10.1137/040620734.  Google Scholar [30] K. Yunt, Modelling of mechanical blocking, Recent Researches in Circuits, Systems, Mechanics and Transportation Systems, (2011), 123-128.   Google Scholar

show all references

##### References:
 [1] M. S. Aronna and F. Rampazzo, ${\mathcal L}^1$ limit solutions for control systems, J. Differential Equations, 258 (2015), 954-979.  doi: 10.1016/j.jde.2014.10.013.  Google Scholar [2] M. S. Aronna, M. Motta and F. Rampazzo, Infimum gaps for limit solutions, Set-Valued Var. Anal., 23 (2015), 3-22.  doi: 10.1007/s11228-014-0296-1.  Google Scholar [3] A. Arutyunov, D. Karamzin and F. Pereira, On a generalization of the impulsive control concept: Controlling system jumps, Discrete Contin. Dyn. Syst., 29 (2011), 403-415.  doi: 10.3934/dcds.2011.29.403.  Google Scholar [4] J.-P. Aubin, Impulse Differential Equations and Hybrid Systems: A Viability Approach, Lecture Notes. University of California, Berkeley, 2000. Google Scholar [5] E. Barron and H. Ishii, The Bellman equation for minimizing the maximum cost, Nonlinear Anal., 13 (1989), 1067-1090.  doi: 10.1016/0362-546X(89)90096-5.  Google Scholar [6] A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, AIMS Series on Applied Mathematics, 2. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2007.  Google Scholar [7] A. Bressan and F. Rampazzo, Moving constraints as stabilizing controls in classical mechanics, Arch. Ration. Mech. Anal., 196 (2010), 97-141.  doi: 10.1007/s00205-009-0237-6.  Google Scholar [8] A. Bressan and F. Rampazzo, On differential systems with vector-valued impulsive controls, Boll. Un. Mat. Ital. B, 2 (1988), 641-656.   Google Scholar [9] A. Bressan and F. Rampazzo, Impulsive control systems with commutative vector fields, J. Optim. Theory Appl., 71 (1991), 67-83.  doi: 10.1007/BF00940040.  Google Scholar [10] A. Bressan and F. Rampazzo, Impulsive control systems without commutativity assumptions, J. Optim. Theory Appl., 81 (1994), 435-457.  doi: 10.1007/BF02193094.  Google Scholar [11] N. Falkner and G. Teschl, On the substitution rule for Lebesgue-Stieltjes integrals, Expo. Math., 30 (2012), 412-418.  doi: 10.1016/j.exmath.2012.09.002.  Google Scholar [12] S. L. Fraga, R. Gomes and F. L. Pereira, An impulsive framework for the control of hybrid systems, in Proc. 46 IEEE Conf. Decision Control, (2007), 5444-5449.  doi: 10.1109/CDC.2007.4434895.  Google Scholar [13] E. Goncharova and M. Staritsyn, Optimization of Measure-Driven Hybrid Systems, J. Optim. Theory Appl., 153 (2012), 139-156.  doi: 10.1007/s10957-011-9944-x.  Google Scholar [14] M. Guerra and A. Sarychev, Fréchet generalized trajectories and minimizers for variational problems of low coercivity, J. Dyn. Control Syst., 21 (2015), 351-377.  doi: 10.1007/s10883-014-9231-x.  Google Scholar [15] W. Haddad, V. Chellaboina and S. Nersesov, Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control, Princeton University Press, Princeton, 2006. doi: 10.1515/9781400865246.  Google Scholar [16] D. Y. Karamzin, V. A. de Oliveira, F. L. Pereira and G. N. Silva, On the properness of an impulsive control extension of dynamic optimization problems, ESAIM Control Optim. Calc. Var., 21 (2015), 857-875.  doi: 10.1051/cocv/2014053.  Google Scholar [17] A. Kurzhanski and P. Tochilin, Impulse controls in models of hybrid systems, Differential Equations, 45 (2009), 731-742.  doi: 10.1134/S0012266109050127.  Google Scholar [18] T. Lyons and Z. Qian, System Control and Rough Paths, Oxford Mathematical Monographs. Oxford Science Publications. Oxford University Press, Oxford, 2002. doi: 10.1093/acprof:oso/9780198506485.001.0001.  Google Scholar [19] B. Miller and E. Y. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems, Kluwer Academic/Plenum Publishers, New York, 2003. doi: 10.1007/978-1-4615-0095-7.  Google Scholar [20] M. Motta and F. Rampazzo, Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls, Differential Integral Equations, 8 (1995), 269-288.   Google Scholar [21] M. Motta and F. Rampazzo, Dynamic programming for nonlinear systems driven by ordinary and impulsive controls, SIAM J. Control Optim., 34 (1996), 199-225.  doi: 10.1137/S036301299325493X.  Google Scholar [22] M. Motta and C. Sartori, Uniqueness results for boundary value problems arising from finite fuel and other singular and unbounded stochastic control problems, Discrete Contin. Dyn. Syst., 21 (2008), 513-535.  doi: 10.3934/dcds.2008.21.513.  Google Scholar [23] M. Motta and C. Sartori, On asymptotic exit-time control problems lacking coercivity, ESAIM Control Optim. Calc. Var., 20 (2014), 957-982.  doi: 10.1051/cocv/2014003.  Google Scholar [24] M. Motta and C. Sartori, Lack of BV bounds for impulsive control systems, J. Math. Anal. Appl., 461 (2018), 422-450.   Google Scholar [25] R. W. Rishel, An extended Pontryagin principle for control systems whose control laws contain measures, J. Soc. Indust. Appl. Math. Ser. A Control, 3 (1965), 191-205.  doi: 10.1137/0303016.  Google Scholar [26] G. Silva and R. Vinter, Measure driven differential inclusions, J. Math. Anal. Appl., 202 (1996), 727-746.  doi: 10.1006/jmaa.1996.0344.  Google Scholar [27] J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972.  Google Scholar [28] H. Whitney, Functions differentiable on the boundaries of regions, Ann. of Math., 35 (1934), 482-485.  doi: 10.2307/1968745.  Google Scholar [29] P. Wolenski and S. Žabić, A sampling method and approximation results for impulsive systems, SIAM J. Control Optim., 46 (2007), 983-998.  doi: 10.1137/040620734.  Google Scholar [30] K. Yunt, Modelling of mechanical blocking, Recent Researches in Circuits, Systems, Mechanics and Transportation Systems, (2011), 123-128.   Google Scholar
 [1] Michael Basin, Pablo Rodriguez-Ramirez. An optimal impulsive control regulator for linear systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 275-282. doi: 10.3934/naco.2011.1.275 [2] Alberto Bressan. Impulsive control of Lagrangian systems and locomotion in fluids. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 1-35. doi: 10.3934/dcds.2008.20.1 [3] C.Z. Wu, K. L. Teo. Global impulsive optimal control computation. Journal of Industrial & Management Optimization, 2006, 2 (4) : 435-450. doi: 10.3934/jimo.2006.2.435 [4] Pavel Drábek, Martina Langerová. Impulsive control of conservative periodic equations and systems: Variational approach. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3789-3802. doi: 10.3934/dcds.2018164 [5] Hongwei Lou, Junjie Wen, Yashan Xu. Time optimal control problems for some non-smooth systems. Mathematical Control & Related Fields, 2014, 4 (3) : 289-314. doi: 10.3934/mcrf.2014.4.289 [6] Canghua Jiang, Kok Lay Teo, Ryan Loxton, Guang-Ren Duan. A neighboring extremal solution for an optimal switched impulsive control problem. Journal of Industrial & Management Optimization, 2012, 8 (3) : 591-609. doi: 10.3934/jimo.2012.8.591 [7] M. Delgado-Téllez, Alberto Ibort. On the geometry and topology of singular optimal control problems and their solutions. Conference Publications, 2003, 2003 (Special) : 223-233. doi: 10.3934/proc.2003.2003.223 [8] Aram Arutyunov, Dmitry Karamzin, Fernando L. Pereira. On a generalization of the impulsive control concept: Controlling system jumps. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 403-415. doi: 10.3934/dcds.2011.29.403 [9] Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist. Continuous and discrete embedded optimal control problems and their application to the analysis of Clebsch optimal control problems and mechanical systems. Journal of Geometric Mechanics, 2013, 5 (1) : 1-38. doi: 10.3934/jgm.2013.5.1 [10] Bangyu Shen, Xiaojing Wang, Chongyang Liu. Nonlinear state-dependent impulsive system in fed-batch culture and its optimal control. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 369-380. doi: 10.3934/naco.2015.5.369 [11] Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764 [12] Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014 [13] Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 [14] Hee-Dae Kwon, Jeehyun Lee, Sung-Dae Yang. Eigenseries solutions to optimal control problem and controllability problems on hyperbolic PDEs. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 305-325. doi: 10.3934/dcdsb.2010.13.305 [15] Maciej Smołka. Asymptotic behaviour of optimal solutions of control problems governed by inclusions. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 641-652. doi: 10.3934/dcds.1998.4.641 [16] Olexiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Mikhail Z. Zgurovsky. Attractors of multivalued semi-flows generated by solutions of optimal control problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1229-1242. doi: 10.3934/dcdsb.2019013 [17] Chunjiang Qian, Wei Lin, Wenting Zha. Generalized homogeneous systems with applications to nonlinear control: A survey. Mathematical Control & Related Fields, 2015, 5 (3) : 585-611. doi: 10.3934/mcrf.2015.5.585 [18] Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 [19] Yong Zhao, Qishao Lu. Periodic oscillations in a class of fuzzy neural networks under impulsive control. Conference Publications, 2011, 2011 (Special) : 1457-1466. doi: 10.3934/proc.2011.2011.1457 [20] Hernán Cendra, María Etchechoury, Sebastián J. Ferraro. Impulsive control of a symmetric ball rolling without sliding or spinning. Journal of Geometric Mechanics, 2010, 2 (4) : 321-342. doi: 10.3934/jgm.2010.2.321

2018 Impact Factor: 0.545