February  2019, 12(1): 43-56. doi: 10.3934/dcdss.2019003

Asymptotics for quasilinear obstacle problems in bad domains

Dipartimento di Scienze di Base e Applicate per l'Ingegneria, "Sapienza" Università di Roma, Via A. Scarpa 16, 00161 Roma, Italy

* Corresponding author

Received  March 2017 Revised  October 2017 Published  July 2018

Fund Project: The first author is supported by INdAM GNAMPA Project 2016 and Grant Ateneo "Sapienza" 2015

We study two obstacle problems involving the p-Laplace operator in domains with n-th pre-fractal and fractal boundary. We perform asymptotic analysis for $p \to \infty $ and $n \to \infty $.

Citation: Raffaela Capitanelli, Salvatore Fragapane. Asymptotics for quasilinear obstacle problems in bad domains. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 43-56. doi: 10.3934/dcdss.2019003
References:
[1]

G. AronssonM. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.), 41 (2004), 439-505. doi: 10.1090/S0273-0979-04-01035-3.

[2]

J. W. Barrett and W. B Liu, Finite element approximation of the p-Laplacian, Math. Comp., 61 (1993), 523-537. doi: 10.2307/2153239.

[3]

T. Bhattacharya, E. DiBenedetto and J. Manfredi, Limits as $p \to + \infty $ of ${\Delta _p}{u_p} = f$ and related extremal problems, Some Topics in Nonlinear PDEs (Turin, 1989), Rend. Sem. Mat. Univ. Politec. Torino 1989, Special Issue, 15-68 (1991).

[4]

F. CamilliR. Capitanelli and M. A. Vivaldi, Absolutely minimizing Lipschitz extensions and infinity harmonic functions on the Sierpinski gasket, Nonlinear Anal., 163 (2017), 71-85. doi: 10.1016/j.na.2017.07.005.

[5]

R. Capitanelli, Asymptotics for mixed Dirichlet-Robin problems in irregular domains, J. Math. Anal. Appl., 362 (2010), 450-459. doi: 10.1016/j.jmaa.2009.09.042.

[6]

R. Capitanelli and M. A. Vivaldi, Dynamical Quasi-Filling Fractal Layers, SIAM J. Math. Anal., 48 (2016), 3931-3961. doi: 10.1137/15M1043893.

[7]

R. Capitanelli and M. A. Vivaldi, FEM for quasilinear obstacle problems in bad domains, ESAIM Math. Model. Numer. Anal., 51 (2017), 2465-2485. doi: 10.1051/m2an/2017033.

[8]

J. I. Diaz, Nonlinear Partial Differential Equations and Free Boundaries, Vol. Ⅰ. Elliptic equations. Research Notes in Mathematics. 106. Pitman, Boston, MA, 1985.

[9]

L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137 (1999), ⅷ+66 pp. doi: 10.1090/memo/0653.

[10]

D. S. Grebenkov, M. Filoche and B. Sapoval, Mathematical basis for a general theory of Laplacian transport towards irregular interfaces, Phys. Rev. E, 73 (2006), 021103, 9pp. doi: 10.1103/PhysRevE.73.021103.

[11]

J. E. Hutchinson, Fractals and selfsimilarity, Indiana Univ. Math. J, 30 (1981), 713-747. doi: 10.1512/iumj.1981.30.30055.

[12]

R. Jensen, Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74. doi: 10.1007/BF00386368.

[13]

J. M. MazónJ. D. Rossi and J. Toledo, Mass transport problems for the Euclidean distance obtained as limits of p-Laplacian type problems with obstacles, Journal of Differential Equations, 256 (2014), 3208-3244. doi: 10.1016/j.jde.2014.01.039.

[14]

E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc., 40 (1934), 837-842. doi: 10.1090/S0002-9904-1934-05978-0.

[15]

U. Mosco, Convergence of convex sets and solutions of variational inequalities, Adv. Math., 3 (1969), 510-585. doi: 10.1016/0001-8708(69)90009-7.

[16]

U. Mosco and M. A. Vivaldi, Layered fractal fibers and potentials, J. Math. Pures Appl. (9), 103 (2015), 1198-1227. doi: 10.1016/j.matpur.2014.10.010.

[17]

Y. PeresO. SchrammS. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22 (2009), 167-210. doi: 10.1090/S0894-0347-08-00606-1.

[18]

H. L. Royden, Real Analysis, Third edition. Macmillan Publishing Company, New York, 1988.

[19]

G. M. Troianiello, Elliptic Differential Equations and Obstacle Problems, Springer, 1987. doi: 10.1007/978-1-4899-3614-1.

[20]

C. Villani, Optimal Transport. Old and New, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338. Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.

show all references

References:
[1]

G. AronssonM. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.), 41 (2004), 439-505. doi: 10.1090/S0273-0979-04-01035-3.

[2]

J. W. Barrett and W. B Liu, Finite element approximation of the p-Laplacian, Math. Comp., 61 (1993), 523-537. doi: 10.2307/2153239.

[3]

T. Bhattacharya, E. DiBenedetto and J. Manfredi, Limits as $p \to + \infty $ of ${\Delta _p}{u_p} = f$ and related extremal problems, Some Topics in Nonlinear PDEs (Turin, 1989), Rend. Sem. Mat. Univ. Politec. Torino 1989, Special Issue, 15-68 (1991).

[4]

F. CamilliR. Capitanelli and M. A. Vivaldi, Absolutely minimizing Lipschitz extensions and infinity harmonic functions on the Sierpinski gasket, Nonlinear Anal., 163 (2017), 71-85. doi: 10.1016/j.na.2017.07.005.

[5]

R. Capitanelli, Asymptotics for mixed Dirichlet-Robin problems in irregular domains, J. Math. Anal. Appl., 362 (2010), 450-459. doi: 10.1016/j.jmaa.2009.09.042.

[6]

R. Capitanelli and M. A. Vivaldi, Dynamical Quasi-Filling Fractal Layers, SIAM J. Math. Anal., 48 (2016), 3931-3961. doi: 10.1137/15M1043893.

[7]

R. Capitanelli and M. A. Vivaldi, FEM for quasilinear obstacle problems in bad domains, ESAIM Math. Model. Numer. Anal., 51 (2017), 2465-2485. doi: 10.1051/m2an/2017033.

[8]

J. I. Diaz, Nonlinear Partial Differential Equations and Free Boundaries, Vol. Ⅰ. Elliptic equations. Research Notes in Mathematics. 106. Pitman, Boston, MA, 1985.

[9]

L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137 (1999), ⅷ+66 pp. doi: 10.1090/memo/0653.

[10]

D. S. Grebenkov, M. Filoche and B. Sapoval, Mathematical basis for a general theory of Laplacian transport towards irregular interfaces, Phys. Rev. E, 73 (2006), 021103, 9pp. doi: 10.1103/PhysRevE.73.021103.

[11]

J. E. Hutchinson, Fractals and selfsimilarity, Indiana Univ. Math. J, 30 (1981), 713-747. doi: 10.1512/iumj.1981.30.30055.

[12]

R. Jensen, Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74. doi: 10.1007/BF00386368.

[13]

J. M. MazónJ. D. Rossi and J. Toledo, Mass transport problems for the Euclidean distance obtained as limits of p-Laplacian type problems with obstacles, Journal of Differential Equations, 256 (2014), 3208-3244. doi: 10.1016/j.jde.2014.01.039.

[14]

E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc., 40 (1934), 837-842. doi: 10.1090/S0002-9904-1934-05978-0.

[15]

U. Mosco, Convergence of convex sets and solutions of variational inequalities, Adv. Math., 3 (1969), 510-585. doi: 10.1016/0001-8708(69)90009-7.

[16]

U. Mosco and M. A. Vivaldi, Layered fractal fibers and potentials, J. Math. Pures Appl. (9), 103 (2015), 1198-1227. doi: 10.1016/j.matpur.2014.10.010.

[17]

Y. PeresO. SchrammS. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22 (2009), 167-210. doi: 10.1090/S0894-0347-08-00606-1.

[18]

H. L. Royden, Real Analysis, Third edition. Macmillan Publishing Company, New York, 1988.

[19]

G. M. Troianiello, Elliptic Differential Equations and Obstacle Problems, Springer, 1987. doi: 10.1007/978-1-4899-3614-1.

[20]

C. Villani, Optimal Transport. Old and New, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338. Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.

Figure 1.  $\Omega_3^n$
Figure 2.  A bad domain
Figure 3.  Second step
Figure 4.  Third step
Figure 5.  Fourth step
[1]

Annamaria Canino, Elisa De Giorgio, Berardino Sciunzi. Second order regularity for degenerate nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4231-4242. doi: 10.3934/dcds.2018184

[2]

Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Dead cores and bursts for p-Laplacian elliptic equations with weights. Conference Publications, 2007, 2007 (Special) : 191-200. doi: 10.3934/proc.2007.2007.191

[3]

Shinji Adachi, Masataka Shibata, Tatsuya Watanabe. Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities. Communications on Pure & Applied Analysis, 2014, 13 (1) : 97-118. doi: 10.3934/cpaa.2014.13.97

[4]

Jingyu Li. Asymptotic behavior of solutions to elliptic equations in a coated body. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1251-1267. doi: 10.3934/cpaa.2009.8.1251

[5]

Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Existence of radial solutions for the $p$-Laplacian elliptic equations with weights. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 447-479. doi: 10.3934/dcds.2006.15.447

[6]

Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609

[7]

Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54

[8]

Hongwei Lou, Jiongmin Yong. Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls. Mathematical Control & Related Fields, 2018, 8 (1) : 57-88. doi: 10.3934/mcrf.2018003

[9]

Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707

[10]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

[11]

M. Matzeu, Raffaella Servadei. A variational approach to a class of quasilinear elliptic equations not in divergence form. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 819-830. doi: 10.3934/dcdss.2012.5.819

[12]

Zhong Tan, Zheng-An Yao. The existence and asymptotic behavior of the evolution p-Laplacian equations with strong nonlinear sources. Communications on Pure & Applied Analysis, 2004, 3 (3) : 475-490. doi: 10.3934/cpaa.2004.3.475

[13]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[14]

John R. Graef, Lingju Kong, Min Wang. Existence of homoclinic solutions for second order difference equations with $p$-laplacian. Conference Publications, 2015, 2015 (special) : 533-539. doi: 10.3934/proc.2015.0533

[15]

Siegfried Carl, Christoph Tietz. Quasilinear elliptic equations with measures and multi-valued lower order terms. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 193-212. doi: 10.3934/dcdss.2018012

[16]

Vasily Denisov and Andrey Muravnik. On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations. Electronic Research Announcements, 2003, 9: 88-93.

[17]

Jiabao Su, Rushun Tian. Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 885-904. doi: 10.3934/cpaa.2010.9.885

[18]

Antonio Ambrosetti, Zhi-Qiang Wang. Positive solutions to a class of quasilinear elliptic equations on $\mathbb R$. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 55-68. doi: 10.3934/dcds.2003.9.55

[19]

Dumitru Motreanu. Three solutions with precise sign properties for systems of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 831-843. doi: 10.3934/dcdss.2012.5.831

[20]

Giuseppe Riey, Berardino Sciunzi. One dimensional symmetry of solutions to some anisotropic quasilinear elliptic equations in the plane. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1157-1166. doi: 10.3934/cpaa.2012.11.1157

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (42)
  • HTML views (35)
  • Cited by (0)

Other articles
by authors

[Back to Top]