# American Institute of Mathematical Sciences

February  2019, 12(1): 65-90. doi: 10.3934/dcdss.2019005

## Convergence and density results for parabolic quasi-linear Venttsel' problems in fractal domains

 Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Università degli studi di Roma Sapienza, Via A. Scarpa 16, 00161 Roma, Italy

* Corresponding author: Simone Creo

Received  April 2017 Revised  November 2017 Published  July 2018

In this paper we study a quasi-linear evolution equation with nonlinear dynamical boundary conditions in a three dimensional fractal cylindrical domain $Q$, whose lateral boundary is a fractal surface $S$. We consider suitable approximating pre-fractal problems in the corresponding pre-fractal varying domains. After proving existence and uniqueness results via standard semigroup approach, we prove density results for the domains of energy functionals defined on $Q$ and $S$. Then we prove that the pre-fractal solutions converge in a suitable sense to the limit fractal one via the Mosco convergence of the energy functionals.

Citation: Simone Creo, Valerio Regis Durante. Convergence and density results for parabolic quasi-linear Venttsel' problems in fractal domains. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 65-90. doi: 10.3934/dcdss.2019005
##### References:
 [1] D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Springer-Verlag, Berlin, 1996. doi: 10.1007/978-3-662-03282-4. Google Scholar [2] D. E. Apushkinskaya and A. I. Nazarov, The Venttsel' problem for nonlinear elliptic equations, J. Math. Sci. (New York), 101 (2000), 2861-2880. doi: 10.1007/BF02672175. Google Scholar [3] H. Attouch, Variational Convergence for Functions and Operators, Eds. Pitman Advanced Publishing Program, London, 1984. Google Scholar [4] C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities: Applications to Free-Boundary Value Problems, Wiley, New York, 1984. Google Scholar [5] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Translated from the Romanian, Noordhoff International Publishing, Leiden, 1976. Google Scholar [6] H. Brézis, Propriétés régularisantes de certains semi-groupes non linéaires,, Israel J. Math., 9 (1971), 513-534. doi: 10.1007/BF02771467. Google Scholar [7] F. Brezzi and G. Gilardi, Fundamentals of P. D. E. for Numerical Analysis, in: Finite Element Handbook (ed.: H. Kardestuncer and D. H. Norrie), McGraw-Hill Book Co., New York, 1987. Google Scholar [8] R. Capitanelli, Homogeneous p-Lagrangians and self-similarity, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 27 (2003), 215-235. Google Scholar [9] R. Capitanelli and M. R. Lancia, Nonlinear energy forms and Lipschitz spaces on the Koch curve, J. Convex Anal., 9 (2002), 245-257. Google Scholar [10] M. Cefalo, G. Dell'Acqua and M. R. Lancia, Numerical approximation of transmission problems across Koch-type highly conductive layers, Applied Mathematics and Computation, 218 (2012), 5453-5473. doi: 10.1016/j.amc.2011.11.033. Google Scholar [11] M. Cefalo and M. R. Lancia, An optimal mesh generation algorithm for domains with Koch type boundaries, Math. Comput. Simulation, 106 (2014), 133-162. doi: 10.1016/j.matcom.2014.04.009. Google Scholar [12] M. Cefalo, M. R. Lancia and H. Liang, Heat flow problems across fractal mixtures: Regularity results of the solutions and numerical approximation, Differ. Integral Equ., 26 (2013), 1027-1054. Google Scholar [13] P. Ciarlet, Basic Error Estimates for Elliptic Problems, in: Handbook of Numerical Analysis Ⅱ (ed.: P. Ciarlet and J. J. Lions), North-Holland, Amsterdam, 1991, 17-351. Google Scholar [14] S. Creo, M. R. Lancia, A. Vélez-Santiago and P. Vernole, Approximation of a nonlinear fractal energy functional on varying Hilbert spaces, Commun. Pure Appl. Anal., 17 (2018), 647-669. doi: 10.3934/cpaa.2018035. Google Scholar [15] J. I. Díaz and L. Tello, On a climate model with a dynamic nonlinear diffusive boundary condition, Discrete Contin. Dyn. Syst., 1 (2009), 253-262. doi: 10.3934/dcdss.2008.1.253. Google Scholar [16] L. C. Evans, Regularity properties for the heat equation subject to nonlinear boundary constraints, Nonlinear Analysis, 1 (1976/77), 593-602. doi: 10.1016/0362-546X(77)90020-7. Google Scholar [17] K. Falconer, The Geometry of Fractal Sets, Cambridge University Press, Cambridge, 1986. Google Scholar [18] U. Freiberg and M. R. Lancia, Energy form on a closed fractal curve, Z. Anal. Anwendingen., 23 (2004), 115-137. doi: 10.4171/ZAA/1190. Google Scholar [19] C. Gal, M. Grasselli and A. Miranville, Nonisothermal Allen-Cahn equations with coupled dynamic boundary conditions, Nonlinear Phenomena with Energy Dissipation, GAKUTO Internat. Ser. Math. Sci. Appl., 29 (2008), 117-139. Google Scholar [20] P. W. Jones, Quasiconformal mapping and extendability of functions in Sobolev spaces, Acta Math., 147 (1981), 71-88. doi: 10.1007/BF02392869. Google Scholar [21] A. Jonsson, Besov spaces on closed subsets of ${\mathbb{R}^n}$, Trans. Amer. Math. Soc., 341 (1994), 355-370. doi: 10.2307/2154626. Google Scholar [22] A. Jonsson and H. Wallin, Function spaces on subsets of $\mathbb{R}^n$, Math. Rep., 2 (1984), xiv+221 pp. Google Scholar [23] A. V. Kolesnikov, Convergence of Dirichlet forms with changing speed measures on ${\mathbb{R}^d}$, Forum Math., 17 (2005), 225-259. doi: 10.1515/form.2005.17.2.225. Google Scholar [24] K. Kuwae and T. Shioya, Convergence of spectral structures: A functional analytic theory and its applications to spectral geometry, Comm. Anal. Geom., 11 (2003), 599-673. doi: 10.4310/CAG.2003.v11.n4.a1. Google Scholar [25] M. R. Lancia, Second order transmission problems across a fractal surface, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 27 (2003), 191-213. Google Scholar [26] M. R. Lancia, V. Regis Durante and P. Vernole, Density results for energy spaces on some fractafolds, Z. Anal. Anwend., 34 (2015), 357-372. Google Scholar [27] M. R. Lancia, V. Regis Durante and P. Vernole, Asymptotics for Venttsel' problems for operators in non divergence form in irregular domains, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 1493-1520. doi: 10.3934/dcdss.2016060. Google Scholar [28] M. R. Lancia, A. Vélez-Santiago and P. Vernole, Quasi-linear Venttsel' problems with nonlocal boundary conditions, Nonlinear Anal. Real World Appl., 35 (2017), 265-291. doi: 10.1016/j.nonrwa.2016.11.002. Google Scholar [29] M. R. Lancia and P. Vernole, Convergence results for parabolic transmission problems across higly conductive layers with small capacity, Adv. Math. Sci. Appl., 16 (2006), 411-445. Google Scholar [30] M. R. Lancia and P. Vernole, Irregular heat flow problems, SIAM J. on Mathematical Analysis, 42 (2010), 1539-1567. doi: 10.1137/090761173. Google Scholar [31] M. R. Lancia and P. Vernole, Semilinear evolution transmission problems across fractal layers, Nonlinear Anal., 75 (2012), 4222-4240. doi: 10.1016/j.na.2012.03.011. Google Scholar [32] M. R. Lancia and P. Vernole, Semilinear evolution problems with Ventcel-type conditions on fractal boundaries, Nonlinear Anal., 80 (2013), 216-232. doi: 10.1016/j.na.2012.08.020. Google Scholar [33] M. R. Lancia and P. Vernole, Semilinear evolution problems with Ventcel-type conditions on fractal boundaries, International Journal of Partial Differential Equations, 2014 (2014), Article ID 461046, 13 pages. doi: 10.1155/2014/461046. Google Scholar [34] M. R. Lancia and P. Vernole, Semilinear Venttsel' problems in fractal domains, Applied Mathematics, 5 (2014), 1820-1833. doi: 10.1007/s00028-014-0233-7. Google Scholar [35] M. R. Lancia and P. Vernole, Venttsel' problems in fractal domains, J. Evol. Equ., 14 (2014), 681-712. doi: 10.1007/s00028-014-0233-7. Google Scholar [36] M. R. Lancia and M. A. Vivaldi, Lipschitz spaces and Besov traces on self similar fractals, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 23 (1999), 101-116. Google Scholar [37] J. Lions and E. Magenes, Non-Homogeneous Boundary Valued Problems and Applications, Vol. 1, Berlin, Springer-Verlag, 1972. Google Scholar [38] V. Maz' ya and S. Poborchi, Differentiable Functions on Bad Domains, World Scientific Publishing Co., Inc., River Edge, NJ, 1997. Google Scholar [39] U. Mosco, Convergence of convex sets and solutions of variational inequalities, Adv. in Math., 3 (1969), 510-585. doi: 10.1016/0001-8708(69)90009-7. Google Scholar [40] U. Mosco, Composite media and asymptotic Dirichlet forms, J. Funct. Anal., 123 (1994), 368-421. doi: 10.1006/jfan.1994.1093. Google Scholar [41] J. Necas, Les Mèthodes Directes en Thèorie des Èquationes Elliptiques, Masson, Paris, 1967. Google Scholar [42] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum, New York, London, 1992. Google Scholar [43] B. Sapoval, General formulation of Laplacian transfer across irregular surfaces, Phys. Rev. Lett., 73 (1994), 3314-3316. doi: 10.1103/PhysRevLett.73.3314. Google Scholar [44] M. Shinbrot, Water waves over periodic bottoms in three dimensions, J. Inst. Math. Appl., 25 (1980), 367-385. doi: 10.1093/imamat/25.4.367. Google Scholar [45] J. M. Tölle, Variational Convergence of Nonlinear Partial Differential Operators on Varying Banach Spaces, Ph. D thesis, Universität Bielefeld, 2010.Google Scholar [46] H. Triebel, Fractals and Spectra Related to Fourier Analysis and Function Spaces, Monographs in Mathematics, vol. 91, Birkhäuser, Basel, 1997. doi: 10.1007/978-3-0348-0034-1. Google Scholar [47] A. D. Venttsel', On boundary conditions for multidimensional diffusion processes, Teor. Veroyatnost. i Primenen., 4 (1959), 172-185; English translation: Theor. Probability Appl., 4 (1959), 164-177. Google Scholar [48] H. Wallin, The trace to the boundary of Sobolev spaces on a snowflake, Manuscripta Math., 73 (1991), 117-125. doi: 10.1007/BF02567633. Google Scholar

show all references

##### References:
 [1] D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Springer-Verlag, Berlin, 1996. doi: 10.1007/978-3-662-03282-4. Google Scholar [2] D. E. Apushkinskaya and A. I. Nazarov, The Venttsel' problem for nonlinear elliptic equations, J. Math. Sci. (New York), 101 (2000), 2861-2880. doi: 10.1007/BF02672175. Google Scholar [3] H. Attouch, Variational Convergence for Functions and Operators, Eds. Pitman Advanced Publishing Program, London, 1984. Google Scholar [4] C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities: Applications to Free-Boundary Value Problems, Wiley, New York, 1984. Google Scholar [5] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Translated from the Romanian, Noordhoff International Publishing, Leiden, 1976. Google Scholar [6] H. Brézis, Propriétés régularisantes de certains semi-groupes non linéaires,, Israel J. Math., 9 (1971), 513-534. doi: 10.1007/BF02771467. Google Scholar [7] F. Brezzi and G. Gilardi, Fundamentals of P. D. E. for Numerical Analysis, in: Finite Element Handbook (ed.: H. Kardestuncer and D. H. Norrie), McGraw-Hill Book Co., New York, 1987. Google Scholar [8] R. Capitanelli, Homogeneous p-Lagrangians and self-similarity, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 27 (2003), 215-235. Google Scholar [9] R. Capitanelli and M. R. Lancia, Nonlinear energy forms and Lipschitz spaces on the Koch curve, J. Convex Anal., 9 (2002), 245-257. Google Scholar [10] M. Cefalo, G. Dell'Acqua and M. R. Lancia, Numerical approximation of transmission problems across Koch-type highly conductive layers, Applied Mathematics and Computation, 218 (2012), 5453-5473. doi: 10.1016/j.amc.2011.11.033. Google Scholar [11] M. Cefalo and M. R. Lancia, An optimal mesh generation algorithm for domains with Koch type boundaries, Math. Comput. Simulation, 106 (2014), 133-162. doi: 10.1016/j.matcom.2014.04.009. Google Scholar [12] M. Cefalo, M. R. Lancia and H. Liang, Heat flow problems across fractal mixtures: Regularity results of the solutions and numerical approximation, Differ. Integral Equ., 26 (2013), 1027-1054. Google Scholar [13] P. Ciarlet, Basic Error Estimates for Elliptic Problems, in: Handbook of Numerical Analysis Ⅱ (ed.: P. Ciarlet and J. J. Lions), North-Holland, Amsterdam, 1991, 17-351. Google Scholar [14] S. Creo, M. R. Lancia, A. Vélez-Santiago and P. Vernole, Approximation of a nonlinear fractal energy functional on varying Hilbert spaces, Commun. Pure Appl. Anal., 17 (2018), 647-669. doi: 10.3934/cpaa.2018035. Google Scholar [15] J. I. Díaz and L. Tello, On a climate model with a dynamic nonlinear diffusive boundary condition, Discrete Contin. Dyn. Syst., 1 (2009), 253-262. doi: 10.3934/dcdss.2008.1.253. Google Scholar [16] L. C. Evans, Regularity properties for the heat equation subject to nonlinear boundary constraints, Nonlinear Analysis, 1 (1976/77), 593-602. doi: 10.1016/0362-546X(77)90020-7. Google Scholar [17] K. Falconer, The Geometry of Fractal Sets, Cambridge University Press, Cambridge, 1986. Google Scholar [18] U. Freiberg and M. R. Lancia, Energy form on a closed fractal curve, Z. Anal. Anwendingen., 23 (2004), 115-137. doi: 10.4171/ZAA/1190. Google Scholar [19] C. Gal, M. Grasselli and A. Miranville, Nonisothermal Allen-Cahn equations with coupled dynamic boundary conditions, Nonlinear Phenomena with Energy Dissipation, GAKUTO Internat. Ser. Math. Sci. Appl., 29 (2008), 117-139. Google Scholar [20] P. W. Jones, Quasiconformal mapping and extendability of functions in Sobolev spaces, Acta Math., 147 (1981), 71-88. doi: 10.1007/BF02392869. Google Scholar [21] A. Jonsson, Besov spaces on closed subsets of ${\mathbb{R}^n}$, Trans. Amer. Math. Soc., 341 (1994), 355-370. doi: 10.2307/2154626. Google Scholar [22] A. Jonsson and H. Wallin, Function spaces on subsets of $\mathbb{R}^n$, Math. Rep., 2 (1984), xiv+221 pp. Google Scholar [23] A. V. Kolesnikov, Convergence of Dirichlet forms with changing speed measures on ${\mathbb{R}^d}$, Forum Math., 17 (2005), 225-259. doi: 10.1515/form.2005.17.2.225. Google Scholar [24] K. Kuwae and T. Shioya, Convergence of spectral structures: A functional analytic theory and its applications to spectral geometry, Comm. Anal. Geom., 11 (2003), 599-673. doi: 10.4310/CAG.2003.v11.n4.a1. Google Scholar [25] M. R. Lancia, Second order transmission problems across a fractal surface, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 27 (2003), 191-213. Google Scholar [26] M. R. Lancia, V. Regis Durante and P. Vernole, Density results for energy spaces on some fractafolds, Z. Anal. Anwend., 34 (2015), 357-372. Google Scholar [27] M. R. Lancia, V. Regis Durante and P. Vernole, Asymptotics for Venttsel' problems for operators in non divergence form in irregular domains, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 1493-1520. doi: 10.3934/dcdss.2016060. Google Scholar [28] M. R. Lancia, A. Vélez-Santiago and P. Vernole, Quasi-linear Venttsel' problems with nonlocal boundary conditions, Nonlinear Anal. Real World Appl., 35 (2017), 265-291. doi: 10.1016/j.nonrwa.2016.11.002. Google Scholar [29] M. R. Lancia and P. Vernole, Convergence results for parabolic transmission problems across higly conductive layers with small capacity, Adv. Math. Sci. Appl., 16 (2006), 411-445. Google Scholar [30] M. R. Lancia and P. Vernole, Irregular heat flow problems, SIAM J. on Mathematical Analysis, 42 (2010), 1539-1567. doi: 10.1137/090761173. Google Scholar [31] M. R. Lancia and P. Vernole, Semilinear evolution transmission problems across fractal layers, Nonlinear Anal., 75 (2012), 4222-4240. doi: 10.1016/j.na.2012.03.011. Google Scholar [32] M. R. Lancia and P. Vernole, Semilinear evolution problems with Ventcel-type conditions on fractal boundaries, Nonlinear Anal., 80 (2013), 216-232. doi: 10.1016/j.na.2012.08.020. Google Scholar [33] M. R. Lancia and P. Vernole, Semilinear evolution problems with Ventcel-type conditions on fractal boundaries, International Journal of Partial Differential Equations, 2014 (2014), Article ID 461046, 13 pages. doi: 10.1155/2014/461046. Google Scholar [34] M. R. Lancia and P. Vernole, Semilinear Venttsel' problems in fractal domains, Applied Mathematics, 5 (2014), 1820-1833. doi: 10.1007/s00028-014-0233-7. Google Scholar [35] M. R. Lancia and P. Vernole, Venttsel' problems in fractal domains, J. Evol. Equ., 14 (2014), 681-712. doi: 10.1007/s00028-014-0233-7. Google Scholar [36] M. R. Lancia and M. A. Vivaldi, Lipschitz spaces and Besov traces on self similar fractals, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 23 (1999), 101-116. Google Scholar [37] J. Lions and E. Magenes, Non-Homogeneous Boundary Valued Problems and Applications, Vol. 1, Berlin, Springer-Verlag, 1972. Google Scholar [38] V. Maz' ya and S. Poborchi, Differentiable Functions on Bad Domains, World Scientific Publishing Co., Inc., River Edge, NJ, 1997. Google Scholar [39] U. Mosco, Convergence of convex sets and solutions of variational inequalities, Adv. in Math., 3 (1969), 510-585. doi: 10.1016/0001-8708(69)90009-7. Google Scholar [40] U. Mosco, Composite media and asymptotic Dirichlet forms, J. Funct. Anal., 123 (1994), 368-421. doi: 10.1006/jfan.1994.1093. Google Scholar [41] J. Necas, Les Mèthodes Directes en Thèorie des Èquationes Elliptiques, Masson, Paris, 1967. Google Scholar [42] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum, New York, London, 1992. Google Scholar [43] B. Sapoval, General formulation of Laplacian transfer across irregular surfaces, Phys. Rev. Lett., 73 (1994), 3314-3316. doi: 10.1103/PhysRevLett.73.3314. Google Scholar [44] M. Shinbrot, Water waves over periodic bottoms in three dimensions, J. Inst. Math. Appl., 25 (1980), 367-385. doi: 10.1093/imamat/25.4.367. Google Scholar [45] J. M. Tölle, Variational Convergence of Nonlinear Partial Differential Operators on Varying Banach Spaces, Ph. D thesis, Universität Bielefeld, 2010.Google Scholar [46] H. Triebel, Fractals and Spectra Related to Fourier Analysis and Function Spaces, Monographs in Mathematics, vol. 91, Birkhäuser, Basel, 1997. doi: 10.1007/978-3-0348-0034-1. Google Scholar [47] A. D. Venttsel', On boundary conditions for multidimensional diffusion processes, Teor. Veroyatnost. i Primenen., 4 (1959), 172-185; English translation: Theor. Probability Appl., 4 (1959), 164-177. Google Scholar [48] H. Wallin, The trace to the boundary of Sobolev spaces on a snowflake, Manuscripta Math., 73 (1991), 117-125. doi: 10.1007/BF02567633. Google Scholar
The pre-fractal curve $F_h$ for $h = 3$.
The fractal domain $Q$.
 [1] Simone Creo, Maria Rosaria Lancia, Alejandro Vélez-Santiago, Paola Vernole. Approximation of a nonlinear fractal energy functional on varying Hilbert spaces. Communications on Pure & Applied Analysis, 2018, 17 (2) : 647-669. doi: 10.3934/cpaa.2018035 [2] Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062 [3] Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129 [4] Gabriele Bonanno, Giuseppina D'Aguì. Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5797-5817. doi: 10.3934/dcds.2017252 [5] Claudianor O. Alves, Vincenzo Ambrosio, Teresa Isernia. Existence, multiplicity and concentration for a class of fractional $p \& q$ Laplacian problems in $\mathbb{R} ^{N}$. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2009-2045. doi: 10.3934/cpaa.2019091 [6] VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $p(x)$-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003 [7] Lingyu Diao, Jian Gao, Jiyong Lu. Some results on $\mathbb{Z}_p\mathbb{Z}_p[v]$-additive cyclic codes. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020029 [8] Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $p$-Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070 [9] K. D. Chu, D. D. Hai. Positive solutions for the one-dimensional singular superlinear $p$-Laplacian problem. Communications on Pure & Applied Analysis, 2020, 19 (1) : 241-252. doi: 10.3934/cpaa.2020013 [10] Phuong Le. Symmetry of singular solutions for a weighted Choquard equation involving the fractional $p$-Laplacian. Communications on Pure & Applied Analysis, 2020, 19 (1) : 527-539. doi: 10.3934/cpaa.2020026 [11] Linglong Du, Caixuan Ren. Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n}$. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3265-3280. doi: 10.3934/dcdsb.2018319 [12] Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $L^p$ type critical Besov spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124 [13] Xinghong Pan, Jiang Xu. Global existence and optimal decay estimates of the compressible viscoelastic flows in $L^p$ critical spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2021-2057. doi: 10.3934/dcds.2019085 [14] Gang Wang, Yuan Zhang. $Z$-eigenvalue exclusion theorems for tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2019039 [15] Annalisa Cesaroni, Serena Dipierro, Matteo Novaga, Enrico Valdinoci. Minimizers of the $p$-oscillation functional. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 6785-6799. doi: 10.3934/dcds.2019231 [16] Lin Du, Yun Zhang. $\mathcal{H}_∞$ filtering for switched nonlinear systems: A state projection method. Journal of Industrial & Management Optimization, 2018, 14 (1) : 19-33. doi: 10.3934/jimo.2017035 [17] Imed Bachar, Habib Mâagli. Singular solutions of a nonlinear equation in a punctured domain of $\mathbb{R}^{2}$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 171-188. doi: 10.3934/dcdss.2019012 [18] Gyu Eun Lee. Local wellposedness for the critical nonlinear Schrödinger equation on $\mathbb{T}^3$. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2763-2783. doi: 10.3934/dcds.2019116 [19] Silvia Frassu. Nonlinear Dirichlet problem for the nonlocal anisotropic operator $L_K$. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1847-1867. doi: 10.3934/cpaa.2019086 [20] Yong Ren, Wensheng Yin. Quasi sure exponential stabilization of nonlinear systems via intermittent $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5871-5883. doi: 10.3934/dcdsb.2019110

2018 Impact Factor: 0.545