The goal of the paper is to investigate the existence of solutions for semilinear upper diagonal infinite systems of differential equations. We will look for solutions of the mentioned infinite systems in a Banach tempered sequence space. In our considerations we utilize the technique associated with the Hausdorff measure of noncompactness and some existence results from the theory of ordinary differential equations in abstract Banach spaces.
Citation: |
R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina and B. N. Sadovskii, Measures of Noncompactness and Condensing Operators, Birkhäuser, Basel, 1992. doi: 10.1007/978-3-0348-5727-7. | |
J. M. Ayerbe Toledano, T. Dominguez Benavides and G. Lopez Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Birkhäuser, Basel, 1997. doi: 10.1007/978-3-0348-8920-9. | |
J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, 1980. | |
J. Banaś and M. Krajewska , Existence of solutions for infinite systems of differential equations in spaces of tempered sequences, Electronic J. Differential Equations, 2017 (2017) , 1-28. | |
J. Banaś and M. Mursaleen, Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations, Springer, New Delhi, 2014. doi: 10.1007/978-81-322-1886-9. | |
L. Cheng , Q. Cheng , Q. Shen , K. Tu and W. Zhang , A new approach to measures of noncompactness of Banach spaces, Studia Math., 240 (2018) , 21-45. doi: 10.4064/sm8448-2-2017. | |
K. Deimling, Ordinary Differential Equations in Banach Spaces, Springer, Berlin, 1977. | |
K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985. doi: 10.1007/978-3-662-00547-7. | |
J. Mallet-Paret and R. D. Nussbaum , Inequivalent measures of noncompactness, Ann. Mat. Pura Appl., 190 (2011) , 453-488. doi: 10.1007/s10231-010-0158-x. | |
H. Mönch and G. H. von Harten , On the Cauchy problem for ordinary differential equations in Banach spaces, Arch. Math., 39 (1982) , 153-160. doi: 10.1007/BF01899196. |