April  2019, 12(2): 203-213. doi: 10.3934/dcdss.2019014

Navier-Stokes equations: Some questions related to the direction of the vorticity

Department of Mathematics, Pisa University, Italy, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy

To Professor Vicentiu Rǎdulescu on the occasion of his 60th birthday

Received  June 2017 Revised  November 2017 Published  August 2018

Fund Project: Partially supported by FCT (Portugal) under grant UID/MAT/04561/3013.

We consider solutions $u$ to the Navier-Stokes equations in the whole space. We set $\omega = \nabla × u, $ the vorticity of $u$. Our study concerns relations between $\beta -$Hölder continuity assumptions on the direction of the vorticity and induced integrability regularity results, a significant research field starting from a pioneering 1993 paper by P. Constantin and Ch. Fefferman. Nowadays it is know that if $\beta = \frac{1}{2}$ then $\omega ∈ L^{∞}(L^2), $ a 2002 result by L.C. Berselli and the author. This conclusion implies smoothness of solutions. Assume now that one is able to prove that a strictly decreasing perturbation of $\beta $ near $\frac{1}{2}$ induces a strictly decreasing perturbation for $r$ near $2$. Since regularity holds if merely $\omega ∈ L^{∞}(L^r), $ for some $r≥ \frac32, $ the above assumption would imply regularity for values $\beta <\frac{1}{2}.$ The aim of the present note is to go deeper into this study and related open problems. The approach developed below reinforces the conjecture on the particular significance of the value $\beta = \frac{1}{2}.$

Citation: Hugo Beirão da Veiga. Navier-Stokes equations: Some questions related to the direction of the vorticity. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 203-213. doi: 10.3934/dcdss.2019014
References:
[1]

H. Beirão da Veiga, Existence and asymptotic behavior for strong solutions of the Navier-Stokes equations in the whole space, Indiana Univ. Math. J., 36 (1987), 149-166.  doi: 10.1512/iumj.1987.36.36008.  Google Scholar

[2]

H. Beirão da Veiga, A new regularity class for the Navier-Stokes equations in $\mathbf{R}^n$, Chin. Ann. Math., Ser.B, 16 (1995), 407-412.   Google Scholar

[3]

H. Beirão da Veiga, Vorticity and smoothness in viscous flows, in Nonlinear Problems in Mathematical Physics and Related Topics, volume in Honor of O. A. Ladyzhenskaya, International Mathematical Series, Kluwer Academic, London, 2 (2002), 61–67. doi: 10.1007/978-1-4615-0701-7_3.  Google Scholar

[4]

H. Beirão da Veiga, Vorticity and regularity for flows under the Navier boundary condition, Comm. Pure Appl. Anal., 5 (2006), 907-918.  doi: 10.3934/cpaa.2006.5.907.  Google Scholar

[5]

H. Beirão da Veiga, Viscous incompressible flows under stress-free boundary conditions. The smoothness effect of near orthogonality or near parallelism between velocity and vorticity, Bollettino UMI, 5 (2012), 225-232.   Google Scholar

[6]

H. Beirão da Veiga, On a family of results concerning direction of vorticity and regularity for the Navier-Stokes equations, Ann. Univ. Ferrara, 60 (2014), 23-34.  doi: 10.1007/s11565-014-0206-3.  Google Scholar

[7]

H. Beirão da Veiga, Open problems concerning the Hőlder continuity of the direction of vorticity for the Navier-Stokes equations, arXiv: 1604.08083 [math. AP] 27 Apr 2016. Google Scholar

[8]

H. Beirão da Veiga and L. C. Berselli, On the regularizing effect of the vorticity direction in incompressible viscous flows, Differential Integral Equations, 15 (2002), 345-356.   Google Scholar

[9]

H. Beirão da Veiga and L. C. Berselli, Navier-Stokes equations: Green's matrices, vorticity direction, and regularity up to the boundary, J. Diff. Equations, 246 (2009), 597-628.  doi: 10.1016/j.jde.2008.02.043.  Google Scholar

[10]

L. C. Berselli, Some geometrical constraints and the problem of the global On regularity for the Navier-Stokes equations, Nonlinearity, 22 (2009), 2561-2581.  doi: 10.1088/0951-7715/22/10/013.  Google Scholar

[11]

L. C. Berselli, Some criteria concerning the vorticity and the problem of global regularity for the 3D Navier-Stokes equations, Ann. Univ. Ferrara Sez. VII Sci. Mat., 55 (2009), 209-224.  doi: 10.1007/s11565-009-0076-2.  Google Scholar

[12]

L. C. Berselli and D. Córdoba, On the regularity of the solutions to the 3D Navier-Stokes equations: A remark on the role of helicity, C.R. Acad. Sci. Paris, Ser.I, 347 (2009), 613-618.  doi: 10.1016/j.crma.2009.03.003.  Google Scholar

[13]

D. Chae, On the regularity conditions for the Navier-Stokes and related equations, Rev. Mat. Iberoam., 23 (2007), 371-384.  doi: 10.4171/RMI/498.  Google Scholar

[14]

D. Chae, On the regularity conditions of suitable weak solutions of the 3D Navier-Stokes equations, J. Math. Fluid Mech., 12 (2010), 171-180.  doi: 10.1007/s00021-008-0280-3.  Google Scholar

[15]

D. ChaeK. Kang and J. Lee, On the interior regularity of suitable weak solutions to the Navier-Stokes equations, Comm. Part. Diff. Eq., 32 (2007), 1189-1207.  doi: 10.1080/03605300601088823.  Google Scholar

[16]

P. Constantin, On the Euler equations of incompressible fluids, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 603-621.  doi: 10.1090/S0273-0979-07-01184-6.  Google Scholar

[17]

P. Constantin, Euler and Navier-Stokes equations, Publ. Mat., 52 (2008), 235-265.  doi: 10.5565/PUBLMAT_52208_01.  Google Scholar

[18]

P. Constantin and Ch. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. J., 42 (1993), 775-789.  doi: 10.1512/iumj.1993.42.42034.  Google Scholar

[19]

P. ConstantinCh. Fefferman and A. Majda, Geometric constraints on potentially singular solutions for the 3D Euler equations, Comm. Partial Differ. Eq., 21 (1996), 559-571.  doi: 10.1080/03605309608821197.  Google Scholar

[20]

G.-H. CottetD. Jiroveanu and B. Michaux, Vorticity dynamics and turbulence models for large-eddy simulations, M2AN Math. Model. Numer. Anal., 37 (2003), 187-207.  doi: 10.1051/m2an:2003013.  Google Scholar

[21]

R. Dascaliuc and Z. Grujić, Coherent vortex structures and 3D enstrophy cascade, Comm. Math. Phys., 317 (2013), 547-561.  doi: 10.1007/s00220-012-1595-8.  Google Scholar

[22]

R. Dascaliuc and Z. Grujić, Vortex stretching and criticality for the three-dimensional Navier-Stokes equations, J. Math. Phys., 53 (2012), 115613, 9 pp. doi: 10.1063/1.4752170.  Google Scholar

[23]

L. EscauriazaG. Seregin and V. Šverák, $L_{3, \, ∞}$-solutions to the Navier-Stokes equations and backward uniqueness, Russian Mathematical Surveys, 58 (2003), 211-250.  doi: 10.1070/RM2003v058n02ABEH000609.  Google Scholar

[24]

G. P. Galdi and P. Maremonti, Sulla regolarità delle soluzioni deboli al sistema di NavierStokes in domini arbitrari, Ann. Univ. Ferrara Sez. VII (N.S.), 34 (1988), 59-73.   Google Scholar

[25]

Y. Giga and H. Miura, On vorticity directions near singularities for the Navier-Stokes flows with infinite energy, Comm. Math. Phys., 303 (2011), 289-300.  doi: 10.1007/s00220-011-1197-x.  Google Scholar

[26]

Z. Grujić, Localization and geometric depletion of vortex-stretching in the 3D NSE, Comm. Math. Phys., 290 (2009), 861-870.  doi: 10.1007/s00220-008-0726-8.  Google Scholar

[27]

Z. Grujić and R. Guberović, Localization of analytic regularity criteria on the vorticity and balance between the vorticity magnitude and coherence of the vorticity direction in the 3D NSE, Comm. Math. Phys., 298 (2010), 407-418.  doi: 10.1007/s00220-010-1000-4.  Google Scholar

[28]

Z. Grujić and A. Ruzmaikina, Interpolation between algebraic and geometric conditions for smoothness of the vorticity in the 3D NSE, Indiana Univ. Math. J., 53 (2004), 1073-1080.  doi: 10.1512/iumj.2004.53.2415.  Google Scholar

[29]

Z. Grujić and Q. S. Zhang, Space-time localization of a class of geometric criteria for preventing blow-up in the 3D NSE, Comm. Math. Phys., 262 (2006), 555-564.  doi: 10.1007/s00220-005-1437-z.  Google Scholar

[30]

N. Ju, Geometric depletion of vortex stretch in 3D viscous incompressible flow, J. Math. Anal. Appl, 321 (2006), 412-425.  doi: 10.1016/j.jmaa.2005.08.048.  Google Scholar

[31]

N. Ju, Geometric constrains for global regularity of 2D quasi-geostrophic flows, J. Differential Equations, 226 (2006), 54-79.  doi: 10.1016/j.jde.2006.03.010.  Google Scholar

[32]

A. Ruzmaikina and Z. Grujić, On depletion of the vortex-stretching term in the 3D Navier-Stokes equations, Comm. Math. Phys., 247 (2004), 601-611.  doi: 10.1007/s00220-004-1072-0.  Google Scholar

[33]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970.  Google Scholar

[34]

A. Vasseur, Regularity criterion for $3D$ Navier-Stokes equations in terms of the direction of the velocity, Appl. Math., 54 (2009), 47-52.  doi: 10.1007/s10492-009-0003-y.  Google Scholar

show all references

References:
[1]

H. Beirão da Veiga, Existence and asymptotic behavior for strong solutions of the Navier-Stokes equations in the whole space, Indiana Univ. Math. J., 36 (1987), 149-166.  doi: 10.1512/iumj.1987.36.36008.  Google Scholar

[2]

H. Beirão da Veiga, A new regularity class for the Navier-Stokes equations in $\mathbf{R}^n$, Chin. Ann. Math., Ser.B, 16 (1995), 407-412.   Google Scholar

[3]

H. Beirão da Veiga, Vorticity and smoothness in viscous flows, in Nonlinear Problems in Mathematical Physics and Related Topics, volume in Honor of O. A. Ladyzhenskaya, International Mathematical Series, Kluwer Academic, London, 2 (2002), 61–67. doi: 10.1007/978-1-4615-0701-7_3.  Google Scholar

[4]

H. Beirão da Veiga, Vorticity and regularity for flows under the Navier boundary condition, Comm. Pure Appl. Anal., 5 (2006), 907-918.  doi: 10.3934/cpaa.2006.5.907.  Google Scholar

[5]

H. Beirão da Veiga, Viscous incompressible flows under stress-free boundary conditions. The smoothness effect of near orthogonality or near parallelism between velocity and vorticity, Bollettino UMI, 5 (2012), 225-232.   Google Scholar

[6]

H. Beirão da Veiga, On a family of results concerning direction of vorticity and regularity for the Navier-Stokes equations, Ann. Univ. Ferrara, 60 (2014), 23-34.  doi: 10.1007/s11565-014-0206-3.  Google Scholar

[7]

H. Beirão da Veiga, Open problems concerning the Hőlder continuity of the direction of vorticity for the Navier-Stokes equations, arXiv: 1604.08083 [math. AP] 27 Apr 2016. Google Scholar

[8]

H. Beirão da Veiga and L. C. Berselli, On the regularizing effect of the vorticity direction in incompressible viscous flows, Differential Integral Equations, 15 (2002), 345-356.   Google Scholar

[9]

H. Beirão da Veiga and L. C. Berselli, Navier-Stokes equations: Green's matrices, vorticity direction, and regularity up to the boundary, J. Diff. Equations, 246 (2009), 597-628.  doi: 10.1016/j.jde.2008.02.043.  Google Scholar

[10]

L. C. Berselli, Some geometrical constraints and the problem of the global On regularity for the Navier-Stokes equations, Nonlinearity, 22 (2009), 2561-2581.  doi: 10.1088/0951-7715/22/10/013.  Google Scholar

[11]

L. C. Berselli, Some criteria concerning the vorticity and the problem of global regularity for the 3D Navier-Stokes equations, Ann. Univ. Ferrara Sez. VII Sci. Mat., 55 (2009), 209-224.  doi: 10.1007/s11565-009-0076-2.  Google Scholar

[12]

L. C. Berselli and D. Córdoba, On the regularity of the solutions to the 3D Navier-Stokes equations: A remark on the role of helicity, C.R. Acad. Sci. Paris, Ser.I, 347 (2009), 613-618.  doi: 10.1016/j.crma.2009.03.003.  Google Scholar

[13]

D. Chae, On the regularity conditions for the Navier-Stokes and related equations, Rev. Mat. Iberoam., 23 (2007), 371-384.  doi: 10.4171/RMI/498.  Google Scholar

[14]

D. Chae, On the regularity conditions of suitable weak solutions of the 3D Navier-Stokes equations, J. Math. Fluid Mech., 12 (2010), 171-180.  doi: 10.1007/s00021-008-0280-3.  Google Scholar

[15]

D. ChaeK. Kang and J. Lee, On the interior regularity of suitable weak solutions to the Navier-Stokes equations, Comm. Part. Diff. Eq., 32 (2007), 1189-1207.  doi: 10.1080/03605300601088823.  Google Scholar

[16]

P. Constantin, On the Euler equations of incompressible fluids, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 603-621.  doi: 10.1090/S0273-0979-07-01184-6.  Google Scholar

[17]

P. Constantin, Euler and Navier-Stokes equations, Publ. Mat., 52 (2008), 235-265.  doi: 10.5565/PUBLMAT_52208_01.  Google Scholar

[18]

P. Constantin and Ch. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. J., 42 (1993), 775-789.  doi: 10.1512/iumj.1993.42.42034.  Google Scholar

[19]

P. ConstantinCh. Fefferman and A. Majda, Geometric constraints on potentially singular solutions for the 3D Euler equations, Comm. Partial Differ. Eq., 21 (1996), 559-571.  doi: 10.1080/03605309608821197.  Google Scholar

[20]

G.-H. CottetD. Jiroveanu and B. Michaux, Vorticity dynamics and turbulence models for large-eddy simulations, M2AN Math. Model. Numer. Anal., 37 (2003), 187-207.  doi: 10.1051/m2an:2003013.  Google Scholar

[21]

R. Dascaliuc and Z. Grujić, Coherent vortex structures and 3D enstrophy cascade, Comm. Math. Phys., 317 (2013), 547-561.  doi: 10.1007/s00220-012-1595-8.  Google Scholar

[22]

R. Dascaliuc and Z. Grujić, Vortex stretching and criticality for the three-dimensional Navier-Stokes equations, J. Math. Phys., 53 (2012), 115613, 9 pp. doi: 10.1063/1.4752170.  Google Scholar

[23]

L. EscauriazaG. Seregin and V. Šverák, $L_{3, \, ∞}$-solutions to the Navier-Stokes equations and backward uniqueness, Russian Mathematical Surveys, 58 (2003), 211-250.  doi: 10.1070/RM2003v058n02ABEH000609.  Google Scholar

[24]

G. P. Galdi and P. Maremonti, Sulla regolarità delle soluzioni deboli al sistema di NavierStokes in domini arbitrari, Ann. Univ. Ferrara Sez. VII (N.S.), 34 (1988), 59-73.   Google Scholar

[25]

Y. Giga and H. Miura, On vorticity directions near singularities for the Navier-Stokes flows with infinite energy, Comm. Math. Phys., 303 (2011), 289-300.  doi: 10.1007/s00220-011-1197-x.  Google Scholar

[26]

Z. Grujić, Localization and geometric depletion of vortex-stretching in the 3D NSE, Comm. Math. Phys., 290 (2009), 861-870.  doi: 10.1007/s00220-008-0726-8.  Google Scholar

[27]

Z. Grujić and R. Guberović, Localization of analytic regularity criteria on the vorticity and balance between the vorticity magnitude and coherence of the vorticity direction in the 3D NSE, Comm. Math. Phys., 298 (2010), 407-418.  doi: 10.1007/s00220-010-1000-4.  Google Scholar

[28]

Z. Grujić and A. Ruzmaikina, Interpolation between algebraic and geometric conditions for smoothness of the vorticity in the 3D NSE, Indiana Univ. Math. J., 53 (2004), 1073-1080.  doi: 10.1512/iumj.2004.53.2415.  Google Scholar

[29]

Z. Grujić and Q. S. Zhang, Space-time localization of a class of geometric criteria for preventing blow-up in the 3D NSE, Comm. Math. Phys., 262 (2006), 555-564.  doi: 10.1007/s00220-005-1437-z.  Google Scholar

[30]

N. Ju, Geometric depletion of vortex stretch in 3D viscous incompressible flow, J. Math. Anal. Appl, 321 (2006), 412-425.  doi: 10.1016/j.jmaa.2005.08.048.  Google Scholar

[31]

N. Ju, Geometric constrains for global regularity of 2D quasi-geostrophic flows, J. Differential Equations, 226 (2006), 54-79.  doi: 10.1016/j.jde.2006.03.010.  Google Scholar

[32]

A. Ruzmaikina and Z. Grujić, On depletion of the vortex-stretching term in the 3D Navier-Stokes equations, Comm. Math. Phys., 247 (2004), 601-611.  doi: 10.1007/s00220-004-1072-0.  Google Scholar

[33]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970.  Google Scholar

[34]

A. Vasseur, Regularity criterion for $3D$ Navier-Stokes equations in terms of the direction of the velocity, Appl. Math., 54 (2009), 47-52.  doi: 10.1007/s10492-009-0003-y.  Google Scholar

[1]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[4]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[5]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[6]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[7]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[8]

Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012

[9]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[10]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[11]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[12]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[13]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[14]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[15]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[16]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[17]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[18]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[19]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[20]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (151)
  • HTML views (127)
  • Cited by (0)

Other articles
by authors

[Back to Top]