• Previous Article
    Tourism destination competitiveness evaluation in Sichuan province using TOPSIS model based on information entropy weights
  • DCDS-S Home
  • This Issue
  • Next Article
    Risk assessment for enterprise merger and acquisition via multiple classifier fusion
August & September  2019, 12(4&5): 761-770. doi: 10.3934/dcdss.2019050

A new approach for worst-case regret portfolio optimization problem

1. 

Business School, University of Shanghai for Science and Technology, Shanghai 200093, China

2. 

School of Mathematics and Statistics, Qingdao University, Qingdao 266071, China

* Corresponding author: Shaojian Qu

Received  June 2017 Revised  October 2017 Published  November 2018

Fund Project: The first author is supported by NSF grant 71571055

This paper considers the worst-case regret portfolio optimization problem when the distributions of the asset returns are uncertain. In general, the solution to this problem is NP hard and approximation methods that minimise the difference between the maximum return and the sum of each portfolio return are often proposed. Applying the duality of semi-infinite programming, the worst-case regret portfolio optimization problem with uncertain distributions can be equivalently reformulated to a linear optimization problem, and the established solution approaches for linear optimization can then be applied. An example of a portfolio optimization problem is provided to show the efficiency of our method and the results demonstrate that our method can satisfy the portfolio risk diversification property under the uncertain distributions of the returns.

Citation: Ying Ji, Shaojian Qu, Yeming Dai. A new approach for worst-case regret portfolio optimization problem. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 761-770. doi: 10.3934/dcdss.2019050
References:
[1]

A. Ben Tal and A. Nemirovski, Robust convex optimizaion, Math Oper Res, 23 (1998), 769-805. doi: 10.1287/moor.23.4.769. Google Scholar

[2]

L. ChenS. He and S. Zhang, Tight bounds for some risk measures with applications to robust portfolio selection, Operations Research, 59 (2011), 847-855. doi: 10.1287/opre.1110.0950. Google Scholar

[3]

X. ChenM. Sim and P. Sun, A robust optimization perspective on stochastic programming, Operational Research, 55 (2007), 1058-1071. doi: 10.1287/opre.1070.0441. Google Scholar

[4]

E. Delage and Y. Y. Ye, Distributionally robust optimization under moment uncertainty with application data-driven problems, Operational Research, 58 (2010), 595-612. doi: 10.1287/opre.1090.0741. Google Scholar

[5]

J. Goh and M. Sim, Distributionally robust optimization and its tractable approximations, Operational Research, 58 (2010), 902-917. doi: 10.1287/opre.1090.0795. Google Scholar

[6]

K. Isii, On the sharpness of Chebyshev-type inequalities, Annals of the Institute of Statistical Mathematics, 14 (1962/1963), 185-197. doi: 10.1007/BF02868641. Google Scholar

[7]

Y. JiT. N. Wang and M. Goh, The worst-case discounted regret portfolio optimization problem, Applied Mathematics and Computation, 239 (2014), 310-319. doi: 10.1016/j.amc.2014.04.072. Google Scholar

[8]

X. LiB. Y. Shou and Z. F. Qin, An expected regret minimization portfolio selection model, European Journal of Operational Research, 218 (2012), 484-492. doi: 10.1016/j.ejor.2011.11.015. Google Scholar

[9]

H. M. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91. Google Scholar

[10]

D. Y. MengQ. Zhao and Z. B. Xu, Improve robustness of sparse PCA by $L_1$-norm maximaization, Pattern Recognit, 45 (2012), 487-497. Google Scholar

[11]

X. J. Tong and F. Wu, Robust reward-risk ratio optimization with application in allocation of generation asset, Optimization, 63 (2014), 1761-1779. doi: 10.1080/02331934.2012.672419. Google Scholar

[12]

M. R. Wagner, Fully distribution-free profit maximization: The inventory management case, Math Operation Reserch, 35 (2010), 728-741. doi: 10.1287/moor.1100.0468. Google Scholar

[13]

W. WiesemannD. Kuhn and M. Sim, Distributionally robust convex optimization, Operations Research, 62 (2014), 1358-1376. doi: 10.1287/opre.2014.1314. Google Scholar

[14]

S. ZymlerD. Kuhn and B. Rustem, Distributionally robust joint chance constraints with second-order moment information, Mathematical Programming, 137 (2013), 167-198. doi: 10.1007/s10107-011-0494-7. Google Scholar

show all references

References:
[1]

A. Ben Tal and A. Nemirovski, Robust convex optimizaion, Math Oper Res, 23 (1998), 769-805. doi: 10.1287/moor.23.4.769. Google Scholar

[2]

L. ChenS. He and S. Zhang, Tight bounds for some risk measures with applications to robust portfolio selection, Operations Research, 59 (2011), 847-855. doi: 10.1287/opre.1110.0950. Google Scholar

[3]

X. ChenM. Sim and P. Sun, A robust optimization perspective on stochastic programming, Operational Research, 55 (2007), 1058-1071. doi: 10.1287/opre.1070.0441. Google Scholar

[4]

E. Delage and Y. Y. Ye, Distributionally robust optimization under moment uncertainty with application data-driven problems, Operational Research, 58 (2010), 595-612. doi: 10.1287/opre.1090.0741. Google Scholar

[5]

J. Goh and M. Sim, Distributionally robust optimization and its tractable approximations, Operational Research, 58 (2010), 902-917. doi: 10.1287/opre.1090.0795. Google Scholar

[6]

K. Isii, On the sharpness of Chebyshev-type inequalities, Annals of the Institute of Statistical Mathematics, 14 (1962/1963), 185-197. doi: 10.1007/BF02868641. Google Scholar

[7]

Y. JiT. N. Wang and M. Goh, The worst-case discounted regret portfolio optimization problem, Applied Mathematics and Computation, 239 (2014), 310-319. doi: 10.1016/j.amc.2014.04.072. Google Scholar

[8]

X. LiB. Y. Shou and Z. F. Qin, An expected regret minimization portfolio selection model, European Journal of Operational Research, 218 (2012), 484-492. doi: 10.1016/j.ejor.2011.11.015. Google Scholar

[9]

H. M. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91. Google Scholar

[10]

D. Y. MengQ. Zhao and Z. B. Xu, Improve robustness of sparse PCA by $L_1$-norm maximaization, Pattern Recognit, 45 (2012), 487-497. Google Scholar

[11]

X. J. Tong and F. Wu, Robust reward-risk ratio optimization with application in allocation of generation asset, Optimization, 63 (2014), 1761-1779. doi: 10.1080/02331934.2012.672419. Google Scholar

[12]

M. R. Wagner, Fully distribution-free profit maximization: The inventory management case, Math Operation Reserch, 35 (2010), 728-741. doi: 10.1287/moor.1100.0468. Google Scholar

[13]

W. WiesemannD. Kuhn and M. Sim, Distributionally robust convex optimization, Operations Research, 62 (2014), 1358-1376. doi: 10.1287/opre.2014.1314. Google Scholar

[14]

S. ZymlerD. Kuhn and B. Rustem, Distributionally robust joint chance constraints with second-order moment information, Mathematical Programming, 137 (2013), 167-198. doi: 10.1007/s10107-011-0494-7. Google Scholar

Table 1.  Numerical Results
This paper[4]Ix
$D^1$ $D^2$IterTimeWrvTimeIterWdrvIx
501060.0120.20240.01770.22550.1024
502560.0130.21330.01970.23710.1003
10025210.110.29780.174270.2494-0.1941
10050230.1290.23470.285420.29360.1914
20050370.9300.54841.708460.5195-0.0556
200100371.2880.39222.502370.3184-0.2318
300100493.5770.52664.81590.70260.2505
300200789.5630.448611.84810.48870.0821
This paper[4]Ix
$D^1$ $D^2$IterTimeWrvTimeIterWdrvIx
501060.0120.20240.01770.22550.1024
502560.0130.21330.01970.23710.1003
10025210.110.29780.174270.2494-0.1941
10050230.1290.23470.285420.29360.1914
20050370.9300.54841.708460.5195-0.0556
200100371.2880.39222.502370.3184-0.2318
300100493.5770.52664.81590.70260.2505
300200789.5630.448611.84810.48870.0821
[1]

Zhenbo Wang. Worst-case performance of the successive approximation algorithm for four identical knapsacks. Journal of Industrial & Management Optimization, 2012, 8 (3) : 651-656. doi: 10.3934/jimo.2012.8.651

[2]

Alireza Goli, Hasan Khademi Zare, Reza Tavakkoli-Moghaddam, Ahmad Sadeghieh. Application of robust optimization for a product portfolio problem using an invasive weed optimization algorithm. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 187-209. doi: 10.3934/naco.2019014

[3]

Han Yang, Jia Yue, Nan-jing Huang. Multi-objective robust cross-market mixed portfolio optimization under hierarchical risk integration. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2018177

[4]

Yue Qi, Zhihao Wang, Su Zhang. On analyzing and detecting multiple optima of portfolio optimization. Journal of Industrial & Management Optimization, 2018, 14 (1) : 309-323. doi: 10.3934/jimo.2017048

[5]

Tao Pang, Azmat Hussain. An infinite time horizon portfolio optimization model with delays. Mathematical Control & Related Fields, 2016, 6 (4) : 629-651. doi: 10.3934/mcrf.2016018

[6]

Yufei Sun, Grace Aw, Kok Lay Teo, Guanglu Zhou. Portfolio optimization using a new probabilistic risk measure. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1275-1283. doi: 10.3934/jimo.2015.11.1275

[7]

Xueting Cui, Xiaoling Sun, Dan Sha. An empirical study on discrete optimization models for portfolio selection. Journal of Industrial & Management Optimization, 2009, 5 (1) : 33-46. doi: 10.3934/jimo.2009.5.33

[8]

Zhifeng Dai, Fenghua Wen. A generalized approach to sparse and stable portfolio optimization problem. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1651-1666. doi: 10.3934/jimo.2018025

[9]

Torsten Trimborn, Lorenzo Pareschi, Martin Frank. Portfolio optimization and model predictive control: A kinetic approach. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6209-6238. doi: 10.3934/dcdsb.2019136

[10]

Dan Li, Li-Ping Pang, Fang-Fang Guo, Zun-Quan Xia. An alternating linearization method with inexact data for bilevel nonsmooth convex optimization. Journal of Industrial & Management Optimization, 2014, 10 (3) : 859-869. doi: 10.3934/jimo.2014.10.859

[11]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[12]

Zhongbao Zhou, Ximei Zeng, Helu Xiao, Tiantian Ren, Wenbin Liu. Multiperiod portfolio optimization for asset-liability management with quadratic transaction costs. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1493-1515. doi: 10.3934/jimo.2018106

[13]

Xiang-Kai Sun, Xian-Jun Long, Hong-Yong Fu, Xiao-Bing Li. Some characterizations of robust optimal solutions for uncertain fractional optimization and applications. Journal of Industrial & Management Optimization, 2017, 13 (2) : 803-824. doi: 10.3934/jimo.2016047

[14]

Lingshuang Kong, Changjun Yu, Kok Lay Teo, Chunhua Yang. Robust real-time optimization for blending operation of alumina production. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1149-1167. doi: 10.3934/jimo.2016066

[15]

Jutamas Kerdkaew, Rabian Wangkeeree. Characterizing robust weak sharp solution sets of convex optimization problems with uncertainty. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-23. doi: 10.3934/jimo.2019074

[16]

Ioannis Baltas, Anastasios Xepapadeas, Athanasios N. Yannacopoulos. Robust portfolio decisions for financial institutions. Journal of Dynamics & Games, 2018, 5 (2) : 61-94. doi: 10.3934/jdg.2018006

[17]

Wenxun Xing, Feng Chen. A-shaped bin packing: Worst case analysis via simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 323-335. doi: 10.3934/jimo.2005.1.323

[18]

Ping-Chen Lin. Portfolio optimization and risk measurement based on non-dominated sorting genetic algorithm. Journal of Industrial & Management Optimization, 2012, 8 (3) : 549-564. doi: 10.3934/jimo.2012.8.549

[19]

Yang Shen, Tak Kuen Siu. Consumption-portfolio optimization and filtering in a hidden Markov-modulated asset price model. Journal of Industrial & Management Optimization, 2017, 13 (1) : 23-46. doi: 10.3934/jimo.2016002

[20]

Chuangwei Lin, Li Zeng, Huiling Wu. Multi-period portfolio optimization in a defined contribution pension plan during the decumulation phase. Journal of Industrial & Management Optimization, 2019, 15 (1) : 401-427. doi: 10.3934/jimo.2018059

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (51)
  • HTML views (326)
  • Cited by (0)

Other articles
by authors

[Back to Top]