# American Institute of Mathematical Sciences

August & September  2019, 12(4&5): 1015-1025. doi: 10.3934/dcdss.2019069

## Enterprise inefficient investment behavior analysis based on regression analysis

 1 Dalian Maritime University, Dalian 116025, China 2 Dalian Commodity Exchange, Dalian 116023, China

* Corresponding author: Wei Li

Received  September 2017 Revised  January 2018 Published  November 2018

Inefficient investment will affect enterprise's survival and long-term development, and ultimately lead to the decline in corporate value. In order to promote the efficiency of the enterprise investment, in this paper, we aim to effectively analyze enterprise inefficient investment behavior, which has great significance in both enterprise management and social resources allocation. Firstly, we propose and analyze some typical enterprise investment theories, such as 1) MM enterprise investment theory, 2) Jorgensen investment theory, and 3) Tobin's q theory. Secondly, we propose a novel enterprise inefficient investment behavior analysis method based on regression analysis. Finally, to demonstrate the effectiveness of the proposed method, we conduct a series of experiments based on the CCER database. Experimental results show that the economy fluctuates across states due to the aggregate cash-flow shock driving the level of aggregate liquidity. Furthermore, we also can see that the particular sample path starts with a series of positive shocks, which can increase the capital value and decrease the cash value.

Citation: Wei Li, Yun Teng. Enterprise inefficient investment behavior analysis based on regression analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1015-1025. doi: 10.3934/dcdss.2019069
##### References:

show all references

##### References:
Price of capital
Marginal value of cash
Marginal value of capital
Cash to capital ratio
Descriptive statistic of different variabless
 Variable Minimum Maximum Average Standard deviation Age(t-1) 3 17 8.81 2.25 Size(t-1) 15.68 25.74 22.09 1.09 Growth(t-1) -1.17 185.21 0.485 5.17 Lev(t-1) 0.0077 54.27 0.963 2.08 TBQ(t-1) 0.0001 15.92 0.674 0.591 Cash(t-1) 0 0.854 0.257 0.126 Ret(t-1) -0.925 6.38 0.254 0.683 IVV1(t) 0 0.624 0.054 0.147 IVV1(t-1) 0 0.552 0.051 0.068 IVV2(t) -1.39 1.22 0.008 0.163 IVV2(t-1) -1.27 1.05 0.027 0.129
 Variable Minimum Maximum Average Standard deviation Age(t-1) 3 17 8.81 2.25 Size(t-1) 15.68 25.74 22.09 1.09 Growth(t-1) -1.17 185.21 0.485 5.17 Lev(t-1) 0.0077 54.27 0.963 2.08 TBQ(t-1) 0.0001 15.92 0.674 0.591 Cash(t-1) 0 0.854 0.257 0.126 Ret(t-1) -0.925 6.38 0.254 0.683 IVV1(t) 0 0.624 0.054 0.147 IVV1(t-1) 0 0.552 0.051 0.068 IVV2(t) -1.39 1.22 0.008 0.163 IVV2(t-1) -1.27 1.05 0.027 0.129
Regression results summarization
 Variable IVV1(t) IVV1(t) IVV1(t) IVV2(t) IVV2(t) Constant -0.072(-2.134**) -0.081(-2.336**) -0.080(-2.317**) -0.395(-3.819**) -0.386(-3.742**) $Age_{t-1}$ 6.954E-5(0.115) 0.001(0.782) 0.000(0.659) -0.001(-0.581) -0.021(-0.883) $Size_{t-1}$ 0.004(0.115) 0.004(0.782) 0.004(0.659) 0.017(-0.588) 0.017(-0.883) $Growth_{t-1}$ 0.000 (-0.415) -9.78E-5(-0.355) 0.000(-0.372) 0.000(0.463) 0.017(-0.883) $TBQ_{t-1}$ -0.011(-1.968**) -0.013(-1.742**) -0.014(-1.696**) -0.049(-3.741) -0.046(-3.691) $Lev_{t-1}$ 0.000(-0.338) 0.000(-0.416) 0.003 (1.524) -0.002(-0.957) 0.016(-3.752***) $Cash_{t-1}$ 0.052(3.749***) 0.066(4.125***) 0.064(4.121***) 0.268(3.654***) 0.165(3.627***) $Ret_{t-1}$ 0.005(2.025***) 0.008(1.028) 0.003(1.114) 0.028(3.457***) 0.028(3.364***) $IVV1_{t-1}$ 0.475(19.965***) 0.472(18.527***) 0.453(18.508***) $IVV2_{t-1}$ 0.136(3.652***) 0.135(3.827***) $Adj-R2$ 0.258 0.274 0.283 0.097 0.106 $F\;value$ 73.85*** 27.71*** 28.54*** 7.96*** 8.72***
 Variable IVV1(t) IVV1(t) IVV1(t) IVV2(t) IVV2(t) Constant -0.072(-2.134**) -0.081(-2.336**) -0.080(-2.317**) -0.395(-3.819**) -0.386(-3.742**) $Age_{t-1}$ 6.954E-5(0.115) 0.001(0.782) 0.000(0.659) -0.001(-0.581) -0.021(-0.883) $Size_{t-1}$ 0.004(0.115) 0.004(0.782) 0.004(0.659) 0.017(-0.588) 0.017(-0.883) $Growth_{t-1}$ 0.000 (-0.415) -9.78E-5(-0.355) 0.000(-0.372) 0.000(0.463) 0.017(-0.883) $TBQ_{t-1}$ -0.011(-1.968**) -0.013(-1.742**) -0.014(-1.696**) -0.049(-3.741) -0.046(-3.691) $Lev_{t-1}$ 0.000(-0.338) 0.000(-0.416) 0.003 (1.524) -0.002(-0.957) 0.016(-3.752***) $Cash_{t-1}$ 0.052(3.749***) 0.066(4.125***) 0.064(4.121***) 0.268(3.654***) 0.165(3.627***) $Ret_{t-1}$ 0.005(2.025***) 0.008(1.028) 0.003(1.114) 0.028(3.457***) 0.028(3.364***) $IVV1_{t-1}$ 0.475(19.965***) 0.472(18.527***) 0.453(18.508***) $IVV2_{t-1}$ 0.136(3.652***) 0.135(3.827***) $Adj-R2$ 0.258 0.274 0.283 0.097 0.106 $F\;value$ 73.85*** 27.71*** 28.54*** 7.96*** 8.72***
 [1] Jiang Xie, Junfu Xu, Celine Nie, Qing Nie. Machine learning of swimming data via wisdom of crowd and regression analysis. Mathematical Biosciences & Engineering, 2017, 14 (2) : 511-527. doi: 10.3934/mbe.2017031 [2] Bingzheng Li, Zhengzhan Dai. Error analysis on regularized regression based on the Maximum correntropy criterion. Mathematical Foundations of Computing, 2020, 3 (1) : 25-40. doi: 10.3934/mfc.2020003 [3] Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 461-478. doi: 10.3934/dcdss.2013.6.461 [4] Shunfu Jin, Wuyi Yue, Shiying Ge. Equilibrium analysis of an opportunistic spectrum access mechanism with imperfect sensing results. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1255-1271. doi: 10.3934/jimo.2016071 [5] Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. Stability analysis of inhomogeneous equilibrium for axially and transversely excited nonlinear beam. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1447-1462. doi: 10.3934/cpaa.2011.10.1447 [6] Bilal Saad, Mazen Saad. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 317-346. doi: 10.3934/dcdss.2014.7.317 [7] Toyohiko Aiki, Joost Hulshof, Nobuyuki Kenmochi, Adrian Muntean. Analysis of non-equilibrium evolution problems: Selected topics in material and life sciences. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : i-iii. doi: 10.3934/dcdss.2014.7.1i [8] Jerzy A. Filar, Michael Haythorpe, Richard Taylor. Linearly-growing reductions of Karp's 21 NP-complete problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 1-16. doi: 10.3934/naco.2018001 [9] Shuhua Wang, Zhenlong Chen, Baohuai Sheng. Convergence of online pairwise regression learning with quadratic loss. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4023-4054. doi: 10.3934/cpaa.2020178 [10] Adil Bagirov, Sona Taheri, Soodabeh Asadi. A difference of convex optimization algorithm for piecewise linear regression. Journal of Industrial & Management Optimization, 2019, 15 (2) : 909-932. doi: 10.3934/jimo.2018077 [11] Shaoyong Lai, Qichang Xie. A selection problem for a constrained linear regression model. Journal of Industrial & Management Optimization, 2008, 4 (4) : 757-766. doi: 10.3934/jimo.2008.4.757 [12] Fengjun Wang, Qingling Zhang, Bin Li, Wanquan Liu. Optimal investment strategy on advertisement in duopoly. Journal of Industrial & Management Optimization, 2016, 12 (2) : 625-636. doi: 10.3934/jimo.2016.12.625 [13] Ming Yang, Chulin Li. Valuing investment project in competitive environment. Conference Publications, 2003, 2003 (Special) : 945-950. doi: 10.3934/proc.2003.2003.945 [14] Xin Jiang, Kam Chuen Yuen, Mi Chen. Optimal investment and reinsurance with premium control. Journal of Industrial & Management Optimization, 2019  doi: 10.3934/jimo.2019080 [15] Adrien Nguyen Huu. Investment under uncertainty, competition and regulation. Journal of Dynamics & Games, 2014, 1 (4) : 579-598. doi: 10.3934/jdg.2014.1.579 [16] Song Wang, Quanxi Shao, Xian Zhou. Knot-optimizing spline networks (KOSNETS) for nonparametric regression. Journal of Industrial & Management Optimization, 2008, 4 (1) : 33-52. doi: 10.3934/jimo.2008.4.33 [17] Baohuai Sheng, Huanxiang Liu, Huimin Wang. Learning rates for the kernel regularized regression with a differentiable strongly convex loss. Communications on Pure & Applied Analysis, 2020, 19 (8) : 3973-4005. doi: 10.3934/cpaa.2020176 [18] Erik Kropat, Gerhard Wilhelm Weber. Fuzzy target-environment networks and fuzzy-regression approaches. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 135-155. doi: 10.3934/naco.2018008 [19] Yang Mi, Kang Zheng, Song Wang. Homography estimation along short videos by recurrent convolutional regression network. Mathematical Foundations of Computing, 2020, 3 (2) : 125-140. doi: 10.3934/mfc.2020014 [20] Yonglin Cao, Yuan Cao, Hai Q. Dinh, Fang-Wei Fu, Jian Gao, Songsak Sriboonchitta. Constacyclic codes of length $np^s$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$. Advances in Mathematics of Communications, 2018, 12 (2) : 231-262. doi: 10.3934/amc.2018016

2019 Impact Factor: 1.233