• Previous Article
    Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment
  • DCDS-S Home
  • This Issue
  • Next Article
    Intelligent recognition algorithm for social network sensitive information based on classification technology
August & September  2019, 12(4&5): 1399-1412. doi: 10.3934/dcdss.2019096

The optimization algorithm for blind processing of high frequency signal of capacitive sensor

Guangdong Provincial Key Laboratory of Petrochemical Equipment Fault Diagnosis, Guangdong University of Petrochemical Technology, Maoming, China

* Corresponding author: Yuanjia Ma

Received  August 2017 Revised  December 2017 Published  November 2018

At present, the high frequency signal processing algorithm of capacitive sensor based on RBF has the problems of poor filtering effect and high level of signal detection and poor quality of signal separation. In this paper, an optimization algorithm for blind processing of high frequency signal of capacitive sensor is proposed. Based on the gradient method, and the calculation way of improved variance gradient estimation, the gradient of square single- error sample is taken as the estimation of mean square error to filter the capacitive sensor signal, and adjust the filtering step by adjusting the threshold, which can enhance the filtering effect of the sensor signal; The detection threshold is calculated by determining the false alarm probability. The decision condition is used to detect the target signal and get the high accuracy sensor signal. The initialization separation matrix is set according to the number of observation signals, and the correlation matrix of the source signal can be calculated, so as to achieve the efficient separation of high frequency signals. The experiment shows that the algorithm can effectively solve the problems existing in the current signal processing algorithm, and it is reliable.

Citation: Yuanjia Ma. The optimization algorithm for blind processing of high frequency signal of capacitive sensor. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1399-1412. doi: 10.3934/dcdss.2019096
References:
[1]

G. A., Fabrication of fiber-optic distributed acoustic sensor and its signal processing, American Journal of Hypertension, 5 (2015), 483-491. doi: 10.1109/TSP.2012.2199314. Google Scholar

[2]

A. Bertrand and M. Moonen, Distributed canonical correlation analysis in wireless sensor networks with application to distributed blind source separation, IEEE Transactions on Signal Processing, 63 (2015), 4800-4813. doi: 10.1109/TSP.2015.2443729. Google Scholar

[3]

X. R. Chen, Nonlinear distortion suppression algorithm of complex optical sensor network communication, Bulletin of Science & http://ieeexplore.ieee.org/document/6200356/Technology, 58-60.Google Scholar

[4]

Y. Q. Chen, Stability of polytopic-type uncertain singular stochastic systems, Journal of Interdisciplinary Mathematics, 20 (2017), 47-62. Google Scholar

[5]

H. D., Y. K., X. L. and et al, Optimal parameter estimation under controlled communication over sensor networks, IEEE Transactions on Signal Processing, 63 (2015), 6473-6485. doi: 10.1109/TSP.2015.2469639. Google Scholar

[6]

J. Edwards, Signal processing powers a sensor revolution [special reports], IEEE Signal Processing Magazine, 33 (2016), 13-16. Google Scholar

[7]

F. ErdenS. VelipasalarA. Z. Alkar and A. E. Cetin, Sensors in assisted living: A survey of signal and image processing methods, IEEE Signal Processing Magazine, 33 (2016), 36-44. Google Scholar

[8]

H. F., Intelligent sensor networks - the integration of sensor networks, signal processing and machine learning, Measurement Techniques, 535-537.Google Scholar

[9]

A. Gunes and M. B. Guldogan, Joint underwater target detection and tracking with the bernoulli filter using an acoustic vector sensor, Digital Signal Processing, 48 (2016), 246-258. doi: 10.1016/j.dsp.2015.09.020. Google Scholar

[10]

A. HassaniA. Bertrand and M. Moonen, Gevd-based low-rank approximation for distributed adaptive node-specific signal estimation in wireless sensor networks, IEEE Transactions on Signal Processing, 64 (2016), 2557-2572. doi: 10.1109/TSP.2015.2510973. Google Scholar

[11]

S. P. Jia, J. Zeng and L. R. Guo, Designing implementation of signal sorting semi-physical simulation analysis platform, Journal of China Academy of Electronics & Information Technology, 59-65.Google Scholar

[12]

S. KisseleffI. F. Akyildiz and W. H. Gerstacker, Digital signal transmission in magnetic induction based wireless underground sensor networks, IEEE Transactions on Communications, 63 (2015), 2300-2311. Google Scholar

[13]

J. LiH. PangF. GuoL. Yang and W. Jiang, Localization of multiple disjoint sources with prior knowledge on source locations in the presence of sensor location errors, Digital Signal Processing, 40 (2015), 181-197. doi: 10.1016/j.dsp.2015.02.003. Google Scholar

[14]

H. L. Liu, Planning wetland ecology-based outdoor education courses in taiwanese junior high schools., Eurasia Journal of Mathematics Science & Technology Education, 13 (2017), 3261-3281. Google Scholar

[15]

B. M., C. D., M. A. and et al, Wavelet dt method for water leak-detection using a vibration sensor: an experimental analysis, Iet Signal Processing, 396-405.Google Scholar

[16]

J. Ma and S. Sun, Optimal linear estimators for multi-sensor stochastic uncertain systems with packet losses of both sides, Digital Signal Processing, 37 (2015), 24-34. Google Scholar

[17]

K. A. MamunC. M. Steele and T. Chau, Swallowing accelerometry signal feature variations with sensor displacement, Medical Engineering & Physics, 37 (2015), 665-673. Google Scholar

[18]

R. K. Miranda, J. P. C. L. D. Costa and F. Antreich, Low complexity performance assessment of a sensor array via unscented transformation, Digital Signal Processing, 190-198.Google Scholar

[19]

S. S. Q., L. J. Y., J. C. D. and et al, Least-square weighted smoothing filter technology applied in magnetic resonance sounding signal processing, Journal of Jilin University (Engineering and Technology Edition), 98 (2016), 985-995.Google Scholar

[20]

L. Staiger, On the hausdorff measure of regular omega-languages in cantor space, Discrete Mathematics and Theoretical Computer Science, 17 (1998), 357-368. Google Scholar

[21]

H. Y. Xiang, L. I. Ting-Ting, L. I. He and Y. Yang, Roller coaster acceleration signal processing based on matlab, Computer Simulation, 245-249.Google Scholar

[22]

H. YingL. Cheng-Chew and C. Sheng, Triple i fuzzy modus tollens method with inconsistent bipolarity information, Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 32 (2017), 4299-4309. Google Scholar

[23]

G. Zheng and B. Wu, Polarisation smoothing for coherent source direction finding with multiple-input and multiple-output electromagnetic vector sensor array, Iet Signal Processing, 10 (2016), 873-879. Google Scholar

show all references

References:
[1]

G. A., Fabrication of fiber-optic distributed acoustic sensor and its signal processing, American Journal of Hypertension, 5 (2015), 483-491. doi: 10.1109/TSP.2012.2199314. Google Scholar

[2]

A. Bertrand and M. Moonen, Distributed canonical correlation analysis in wireless sensor networks with application to distributed blind source separation, IEEE Transactions on Signal Processing, 63 (2015), 4800-4813. doi: 10.1109/TSP.2015.2443729. Google Scholar

[3]

X. R. Chen, Nonlinear distortion suppression algorithm of complex optical sensor network communication, Bulletin of Science & http://ieeexplore.ieee.org/document/6200356/Technology, 58-60.Google Scholar

[4]

Y. Q. Chen, Stability of polytopic-type uncertain singular stochastic systems, Journal of Interdisciplinary Mathematics, 20 (2017), 47-62. Google Scholar

[5]

H. D., Y. K., X. L. and et al, Optimal parameter estimation under controlled communication over sensor networks, IEEE Transactions on Signal Processing, 63 (2015), 6473-6485. doi: 10.1109/TSP.2015.2469639. Google Scholar

[6]

J. Edwards, Signal processing powers a sensor revolution [special reports], IEEE Signal Processing Magazine, 33 (2016), 13-16. Google Scholar

[7]

F. ErdenS. VelipasalarA. Z. Alkar and A. E. Cetin, Sensors in assisted living: A survey of signal and image processing methods, IEEE Signal Processing Magazine, 33 (2016), 36-44. Google Scholar

[8]

H. F., Intelligent sensor networks - the integration of sensor networks, signal processing and machine learning, Measurement Techniques, 535-537.Google Scholar

[9]

A. Gunes and M. B. Guldogan, Joint underwater target detection and tracking with the bernoulli filter using an acoustic vector sensor, Digital Signal Processing, 48 (2016), 246-258. doi: 10.1016/j.dsp.2015.09.020. Google Scholar

[10]

A. HassaniA. Bertrand and M. Moonen, Gevd-based low-rank approximation for distributed adaptive node-specific signal estimation in wireless sensor networks, IEEE Transactions on Signal Processing, 64 (2016), 2557-2572. doi: 10.1109/TSP.2015.2510973. Google Scholar

[11]

S. P. Jia, J. Zeng and L. R. Guo, Designing implementation of signal sorting semi-physical simulation analysis platform, Journal of China Academy of Electronics & Information Technology, 59-65.Google Scholar

[12]

S. KisseleffI. F. Akyildiz and W. H. Gerstacker, Digital signal transmission in magnetic induction based wireless underground sensor networks, IEEE Transactions on Communications, 63 (2015), 2300-2311. Google Scholar

[13]

J. LiH. PangF. GuoL. Yang and W. Jiang, Localization of multiple disjoint sources with prior knowledge on source locations in the presence of sensor location errors, Digital Signal Processing, 40 (2015), 181-197. doi: 10.1016/j.dsp.2015.02.003. Google Scholar

[14]

H. L. Liu, Planning wetland ecology-based outdoor education courses in taiwanese junior high schools., Eurasia Journal of Mathematics Science & Technology Education, 13 (2017), 3261-3281. Google Scholar

[15]

B. M., C. D., M. A. and et al, Wavelet dt method for water leak-detection using a vibration sensor: an experimental analysis, Iet Signal Processing, 396-405.Google Scholar

[16]

J. Ma and S. Sun, Optimal linear estimators for multi-sensor stochastic uncertain systems with packet losses of both sides, Digital Signal Processing, 37 (2015), 24-34. Google Scholar

[17]

K. A. MamunC. M. Steele and T. Chau, Swallowing accelerometry signal feature variations with sensor displacement, Medical Engineering & Physics, 37 (2015), 665-673. Google Scholar

[18]

R. K. Miranda, J. P. C. L. D. Costa and F. Antreich, Low complexity performance assessment of a sensor array via unscented transformation, Digital Signal Processing, 190-198.Google Scholar

[19]

S. S. Q., L. J. Y., J. C. D. and et al, Least-square weighted smoothing filter technology applied in magnetic resonance sounding signal processing, Journal of Jilin University (Engineering and Technology Edition), 98 (2016), 985-995.Google Scholar

[20]

L. Staiger, On the hausdorff measure of regular omega-languages in cantor space, Discrete Mathematics and Theoretical Computer Science, 17 (1998), 357-368. Google Scholar

[21]

H. Y. Xiang, L. I. Ting-Ting, L. I. He and Y. Yang, Roller coaster acceleration signal processing based on matlab, Computer Simulation, 245-249.Google Scholar

[22]

H. YingL. Cheng-Chew and C. Sheng, Triple i fuzzy modus tollens method with inconsistent bipolarity information, Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 32 (2017), 4299-4309. Google Scholar

[23]

G. Zheng and B. Wu, Polarisation smoothing for coherent source direction finding with multiple-input and multiple-output electromagnetic vector sensor array, Iet Signal Processing, 10 (2016), 873-879. Google Scholar

Figure 1.  schematic diagram of adaptive filtering
Figure 2.  horizontal filter structure of joint parameter estimation
Figure 3.  The linear instantaneous aliasing model of the source signal
Figure 4.  experimental model
Figure 5.  Comparison of filtering effect of sensor operation by different algorithms
Figure 6.  Comparison of different algorithms for detecting high frequency signals of sensor
Figure 7.  Comparison of the separation effect of high frequency signals by different algorithms
[1]

Ennio Fedrizzi. High frequency analysis of imaging with noise blending. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 979-998. doi: 10.3934/dcdsb.2014.19.979

[2]

Deconinck Bernard, Olga Trichtchenko. High-frequency instabilities of small-amplitude solutions of Hamiltonian PDEs. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1323-1358. doi: 10.3934/dcds.2017055

[3]

Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473

[4]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[5]

Shi Jin, Dongsheng Yin. Computational high frequency wave diffraction by a corner via the Liouville equation and geometric theory of diffraction. Kinetic & Related Models, 2011, 4 (1) : 295-316. doi: 10.3934/krm.2011.4.295

[6]

Eduard Feireisl, Dalibor Pražák. A stabilizing effect of a high-frequency driving force on the motion of a viscous, compressible, and heat conducting fluid. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 95-111. doi: 10.3934/dcdss.2009.2.95

[7]

Yves Achdou, Fabio Camilli, Lucilla Corrias. On numerical approximation of the Hamilton-Jacobi-transport system arising in high frequency approximations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 629-650. doi: 10.3934/dcdsb.2014.19.629

[8]

João Borges de Sousa, Bernardo Maciel, Fernando Lobo Pereira. Sensor systems on networked vehicles. Networks & Heterogeneous Media, 2009, 4 (2) : 223-247. doi: 10.3934/nhm.2009.4.223

[9]

Thanh-Tung Pham, Thomas Green, Jonathan Chen, Phuong Truong, Aditya Vaidya, Linda Bushnell. A salinity sensor system for estuary studies. Networks & Heterogeneous Media, 2009, 4 (2) : 381-392. doi: 10.3934/nhm.2009.4.381

[10]

Michael Hintermüller, Tao Wu. Bilevel optimization for calibrating point spread functions in blind deconvolution. Inverse Problems & Imaging, 2015, 9 (4) : 1139-1169. doi: 10.3934/ipi.2015.9.1139

[11]

Z. G. Feng, Kok Lay Teo, N. U. Ahmed, Yulin Zhao, W. Y. Yan. Optimal fusion of sensor data for Kalman filtering. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 483-503. doi: 10.3934/dcds.2006.14.483

[12]

Z.G. Feng, K.L. Teo, Y. Zhao. Branch and bound method for sensor scheduling in discrete time. Journal of Industrial & Management Optimization, 2005, 1 (4) : 499-512. doi: 10.3934/jimo.2005.1.499

[13]

Mariya Zhariy, Andreas Neubauer, Matthias Rosensteiner, Ronny Ramlau. Cumulative wavefront reconstructor for the Shack-Hartmann sensor. Inverse Problems & Imaging, 2011, 5 (4) : 893-913. doi: 10.3934/ipi.2011.5.893

[14]

Xiao Lan Zhu, Zhi Guo Feng, Jian Wen Peng. Robust design of sensor fusion problem in discrete time. Journal of Industrial & Management Optimization, 2017, 13 (2) : 825-834. doi: 10.3934/jimo.2016048

[15]

Lutz Recke, Anatoly Samoilenko, Alexey Teplinsky, Viktor Tkachenko, Serhiy Yanchuk. Frequency locking of modulated waves. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 847-875. doi: 10.3934/dcds.2011.31.847

[16]

Jianhong (Jackie) Shen, Sung Ha Kang. Quantum TV and applications in image processing. Inverse Problems & Imaging, 2007, 1 (3) : 557-575. doi: 10.3934/ipi.2007.1.557

[17]

Lingchen Kong, Naihua Xiu, Guokai Liu. Partial $S$-goodness for partially sparse signal recovery. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 25-38. doi: 10.3934/naco.2014.4.25

[18]

Björn Popilka, Simon Setzer, Gabriele Steidl. Signal recovery from incomplete measurements in the presence of outliers. Inverse Problems & Imaging, 2007, 1 (4) : 661-672. doi: 10.3934/ipi.2007.1.661

[19]

Wei Xu, Liying Yu, Gui-Hua Lin, Zhi Guo Feng. Optimal switching signal design with a cost on switching action. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019068

[20]

Marcel Freitag. The fast signal diffusion limit in nonlinear chemotaxis systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019211

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (21)
  • HTML views (323)
  • Cited by (0)

Other articles
by authors

[Back to Top]