    October  2019, 12(6): 1635-1668. doi: 10.3934/dcdss.2019111

## On the controllability of racing sailing boats with foils

 1 Département d'ingénierie mathématique, laboratoire M2N, 292, rue saint Martin, 75003 Paris, France 2 Laboratoire de mathématiques d'Orsay, UMR 8628, Univ Paris-Sud, CNRS, Université Paris-Saclay, Orsay 91405, France

Received  November 2017 Revised  April 2018 Published  November 2018

The development of foils for racing boats has changed the strategy of sailing. Recently, the America's cup held in San Francisco, has been the theatre of a tragicomic history due to the foils. During the last round, the New-Zealand boat was winning by 8 to 1 against the defender USA. The winner is the first with 9 victories. USA team understood suddenly (may be) how to use the control of the pitching of the main foils by adjusting the rake in order to stabilize the ship. And USA won by 9 victories against 8 to the challenger NZ. Our goal in this paper is to point out few aspects which could be taken into account in order to improve this mysterious control law which is known as the key of the victory of the USA team. There are certainly many reasons and in particular the cleverness of the sailors and of all the engineering team behind this project. But it appears interesting to have a mathematical discussion, even if it is a partial one, on the mechanical behaviour of these extraordinary sailing boats. The numerical examples given here are not the true ones. They have just been invented in order to explain the theoretical developments concerning three points: the possibility of tacking on the foils for sailing upwind, the nature of foiling instabilities, if there are, when the boat is flying and the control laws.

Citation: Philippe Destuynder, Caroline Fabre. On the controllability of racing sailing boats with foils. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1635-1668. doi: 10.3934/dcdss.2019111
##### References:
  R. Bellman, Dynamic Programming, Dover Publications, Inc., Mineola, NY, 2003. Google Scholar  H. Brezis, Analyse Fonctionnelle, edition Masson, Paris, 1983. Google Scholar  J. Cea, Optimisation, Théorie et Algorithmes, Dunod, Paris, 1971. Google Scholar  P.-G. Ciarlet, Introduction à L'analyse Numérique et à L'optimisation, Masson, Paris, 1982. Google Scholar  Ph. Destuynder, Introduction à L'aéroélasticité et à L'aéroacoustique, Hermès-Lavoisier, Paris-Londres, 2008. Google Scholar  Ph. Destuynder, Analyse et Contrôle des Équations Différentielles, Hermès-Lavoisier, Paris-Londres, 2010. Google Scholar  Ph. Destuynder and C. Fabre, Sailing boats with foils, To appear, 2017.Google Scholar  Ph. Destuynder and M. T. Ribereau, Non linear dynamics of test models in wind tunnels, Eur. J. Mech. A/Solids, 15 (1996), 91-136. Google Scholar  E. H. Dowell, H. C. Curtiss Jr., R. H. Scanlan and F. Sisto, A Modern Course in Aeroelasticity, Monographs and textbooks of solids and fluids. Alphen aan den Rijn, Sijthoff and Noordhoff International Publishers, 1978.Google Scholar  A. Ducoin and Y.-L. Young, Hydroelastic response and stability of a hydrofoil in viscous flow, in Journ. of Fluids and Structures, 38 (2013), 40–57.Google Scholar  Y. C. Fung, An Introduction to the Theory of Aeroelasticity, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1955. Google Scholar  A. J. Hermans, G. C. Hsiao and R. Timman, Water Waves and Ship Hydrodynamics, Delft University Press, The Netherlands, 1985. doi: 10.1007/978-94-017-3657-2.  Google Scholar  J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Masson, Paris, 1988. Google Scholar  J. L. Lions, Perturbations Singulères dans les Problèmes Aux Limites et en Contrôle Optimal, Springer-Verlag, Berlin-New York, 1973. Google Scholar

show all references

##### References:
  R. Bellman, Dynamic Programming, Dover Publications, Inc., Mineola, NY, 2003. Google Scholar  H. Brezis, Analyse Fonctionnelle, edition Masson, Paris, 1983. Google Scholar  J. Cea, Optimisation, Théorie et Algorithmes, Dunod, Paris, 1971. Google Scholar  P.-G. Ciarlet, Introduction à L'analyse Numérique et à L'optimisation, Masson, Paris, 1982. Google Scholar  Ph. Destuynder, Introduction à L'aéroélasticité et à L'aéroacoustique, Hermès-Lavoisier, Paris-Londres, 2008. Google Scholar  Ph. Destuynder, Analyse et Contrôle des Équations Différentielles, Hermès-Lavoisier, Paris-Londres, 2010. Google Scholar  Ph. Destuynder and C. Fabre, Sailing boats with foils, To appear, 2017.Google Scholar  Ph. Destuynder and M. T. Ribereau, Non linear dynamics of test models in wind tunnels, Eur. J. Mech. A/Solids, 15 (1996), 91-136. Google Scholar  E. H. Dowell, H. C. Curtiss Jr., R. H. Scanlan and F. Sisto, A Modern Course in Aeroelasticity, Monographs and textbooks of solids and fluids. Alphen aan den Rijn, Sijthoff and Noordhoff International Publishers, 1978.Google Scholar  A. Ducoin and Y.-L. Young, Hydroelastic response and stability of a hydrofoil in viscous flow, in Journ. of Fluids and Structures, 38 (2013), 40–57.Google Scholar  Y. C. Fung, An Introduction to the Theory of Aeroelasticity, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1955. Google Scholar  A. J. Hermans, G. C. Hsiao and R. Timman, Water Waves and Ship Hydrodynamics, Delft University Press, The Netherlands, 1985. doi: 10.1007/978-94-017-3657-2.  Google Scholar  J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Masson, Paris, 1988. Google Scholar  J. L. Lions, Perturbations Singulères dans les Problèmes Aux Limites et en Contrôle Optimal, Springer-Verlag, Berlin-New York, 1973. Google Scholar Two situations where the controlled foiling could avoid to tack and to loose the race Pitching exact control with nul initial heaving and $u = 10m/s$. One can observe that the control is very close to bang-bang control (first negative and then positive. It is almost zero after $t = 3$ sec Control with contraints and an initial heaving with null initial pitching and velocity $u = 10m/s$. One can notice that at the beginning the control is bang-bang and finally the adjustement is interior to the upper bounds of the control. Even if the computations are performed with $T = 10$ sec.; one can see that the exact controllability is quite performed at $t = 5$ sec. with the values chosen which are realistic Control with contraints and an initial heaving with null initial pitching and velocity $u = 15m/s$ Control with contraints and an initial heaving with null initial pitching and velocity $u = 20m/s$ Control with contraints and an initial pitching with null initial heaving and velocity $u = 10m/s$ Control with contraints with an initial pitching with null initial heaving and velocity $u = 15m/s$ Control with contraints with initial pitching with null initial heaving and velocity $u = 20m/s$ Linear damping of the model (44) (minus the imaginary part of the eigenvalues $\lambda$) on the top Figure and the frequencies (real part of $\lambda$ divided by $2\pi$) on the bottom one, versus the velocity of the ship ($m./sec.)$ Several trajectories for different values of $\alpha_{max}$ starting from the same initial condition. One can observe that $\alpha_{max}$ should be adjusted in order to obain the right control. This is why the helmsman has a control box which enables him to adjust $\alpha_{max}$ by steps of $\pm.5^0$ Several trajectories for different values of $\alpha_{max}$ starting from the same initial condition. One can observe that this control is unuseful. This is why the rocker switcher has to detect the sign of the velocity of the rake and not the one of the angle (the pitching angle) The Oracle USA-Team used this mechanical control to win the last eight races in a row. In particular, but not only, it enables them to navigate in the wake of the challenger mainly at the tacking
Expressions of the coefficients $C_{ij}$ near $\gamma = 0$ versus $\alpha$ and $\beta$
 Coefficient Expression of the coefficients of the matrix ${\mathcal C}$ near $\gamma=0$ $C_{11}$ $- \frac{\rho _e}{2} u \bigg (S_s R_{zs}+S_fR_{zf}\bigg )$ $C_{12}$ $\rho _e u \bigg (S_s d_sc_{zs}^0+S_fd_f\cos(\alpha^0)c_{zf}+\frac{S_sh}{2}R_{zs}-\frac{S_fd_f}{2}\sin(\alpha^0)R_{zf}\bigg )$ $C_{21}$ $\frac{\rho _e u}{2} \bigg (-S_s LR_{ms}-LS_fR_{mf}-S_fd_f\sin(\alpha^0)R_{zf} +S_shR_{zs}\bigg )$ $C_{22}$ $\begin{array}{l} -\frac{\varrho_eS_shu}{2}[2d_s c_{zs}^0+hR_{zs}]+\frac{\varrho_euS_fd_f^2}{2}[\sin(2\alpha^0)c_{zf}^0-\sin(\alpha^0)^2 R_{zf}]\\+\frac{\varrho_e u LS_s}{2}\big[2d_sc_{ms}^0+hR_{ms}\big]+\frac{\varrho_e u L}{2}S_fd_f\big[-\sin(\alpha^0)R_{mf}+2\cos(\alpha^0)c_{mf}^0\big]\end{array}$
 Coefficient Expression of the coefficients of the matrix ${\mathcal C}$ near $\gamma=0$ $C_{11}$ $- \frac{\rho _e}{2} u \bigg (S_s R_{zs}+S_fR_{zf}\bigg )$ $C_{12}$ $\rho _e u \bigg (S_s d_sc_{zs}^0+S_fd_f\cos(\alpha^0)c_{zf}+\frac{S_sh}{2}R_{zs}-\frac{S_fd_f}{2}\sin(\alpha^0)R_{zf}\bigg )$ $C_{21}$ $\frac{\rho _e u}{2} \bigg (-S_s LR_{ms}-LS_fR_{mf}-S_fd_f\sin(\alpha^0)R_{zf} +S_shR_{zs}\bigg )$ $C_{22}$ $\begin{array}{l} -\frac{\varrho_eS_shu}{2}[2d_s c_{zs}^0+hR_{zs}]+\frac{\varrho_euS_fd_f^2}{2}[\sin(2\alpha^0)c_{zf}^0-\sin(\alpha^0)^2 R_{zf}]\\+\frac{\varrho_e u LS_s}{2}\big[2d_sc_{ms}^0+hR_{ms}\big]+\frac{\varrho_e u L}{2}S_fd_f\big[-\sin(\alpha^0)R_{mf}+2\cos(\alpha^0)c_{mf}^0\big]\end{array}$
  Lijuan Wang, Qishu Yan. Optimal control problem for exact synchronization of parabolic system. Mathematical Control & Related Fields, 2019, 9 (3) : 411-424. doi: 10.3934/mcrf.2019019  Kazimierz Malanowski, Helmut Maurer. Sensitivity analysis for state constrained optimal control problems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 241-272. doi: 10.3934/dcds.1998.4.241  Bin Li, Kok Lay Teo, Cheng-Chew Lim, Guang Ren Duan. An optimal PID controller design for nonlinear constrained optimal control problems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1101-1117. doi: 10.3934/dcdsb.2011.16.1101  Lili Chang, Wei Gong, Guiquan Sun, Ningning Yan. PDE-constrained optimal control approach for the approximation of an inverse Cauchy problem. Inverse Problems & Imaging, 2015, 9 (3) : 791-814. doi: 10.3934/ipi.2015.9.791  Piernicola Bettiol. State constrained $L^\infty$ optimal control problems interpreted as differential games. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3989-4017. doi: 10.3934/dcds.2015.35.3989  Christian Clason, Barbara Kaltenbacher. Avoiding degeneracy in the Westervelt equation by state constrained optimal control. Evolution Equations & Control Theory, 2013, 2 (2) : 281-300. doi: 10.3934/eect.2013.2.281  Matthias Gerdts, Martin Kunkel. Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation. Journal of Industrial & Management Optimization, 2014, 10 (1) : 311-336. doi: 10.3934/jimo.2014.10.311  Thalya Burden, Jon Ernstberger, K. Renee Fister. Optimal control applied to immunotherapy. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 135-146. doi: 10.3934/dcdsb.2004.4.135  Ellina Grigorieva, Evgenii Khailov. Optimal control of pollution stock. Conference Publications, 2011, 2011 (Special) : 578-588. doi: 10.3934/proc.2011.2011.578  Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967  Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial & Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275  Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021  Klaus-Jochen Engel, Marjeta Kramar FijavŽ. Exact and positive controllability of boundary control systems. Networks & Heterogeneous Media, 2017, 12 (2) : 319-337. doi: 10.3934/nhm.2017014  Ciro D'Apice, Peter I. Kogut, Rosanna Manzo. On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks & Heterogeneous Media, 2014, 9 (3) : 501-518. doi: 10.3934/nhm.2014.9.501  Clara Carlota, António Ornelas. The DuBois-Reymond differential inclusion for autonomous optimal control problems with pointwise-constrained derivatives. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 467-484. doi: 10.3934/dcds.2011.29.467  Leonardo Colombo. Second-order constrained variational problems on Lie algebroids: Applications to Optimal Control. Journal of Geometric Mechanics, 2017, 9 (1) : 1-45. doi: 10.3934/jgm.2017001  Ming Yan, Lili Chang, Ningning Yan. Finite element method for constrained optimal control problems governed by nonlinear elliptic PDEs. Mathematical Control & Related Fields, 2012, 2 (2) : 183-194. doi: 10.3934/mcrf.2012.2.183  Jorge San Martín, Takéo Takahashi, Marius Tucsnak. An optimal control approach to ciliary locomotion. Mathematical Control & Related Fields, 2016, 6 (2) : 293-334. doi: 10.3934/mcrf.2016005  C.Z. Wu, K. L. Teo. Global impulsive optimal control computation. Journal of Industrial & Management Optimization, 2006, 2 (4) : 435-450. doi: 10.3934/jimo.2006.2.435  Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4455-4475. doi: 10.3934/dcds.2015.35.4455

2018 Impact Factor: 0.545