November  2019, 12(7): 1807-1833. doi: 10.3934/dcdss.2019119

The work of Norman Dancer

School of Science and Technology, University of New England, Armidale, NSW 2351, Australia

Prof. Norman Dancer's help during the preparation of this article is gratefully acknowledged. The author also thanks the editors for advices leading to an improved version of this article

Received  June 2018 Revised  July 2018 Published  December 2018

In this article, a sample of Norman Dancer's published works are briefly described, to give the reader a taste of his deep and important research on nonlinear functional analysis, nonlinear ODE and PDE problems, and dynamical systems. The sample covers a variety of topics where Norman Dancer has made remarkable contributions.

The author takes this opportunity to express his deep admiration of the work of Professor Norman Dancer, and to thank him for the kind help to the development of the author's career, which has been greatly influenced by him and his work. 

Citation: Yihong Du. The work of Norman Dancer. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1807-1833. doi: 10.3934/dcdss.2019119
References:
[1]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.  doi: 10.1137/1018114.  Google Scholar

[2]

A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl.(4), 93 (1972), 231-246. doi: 10.1007/BF02412022.  Google Scholar

[3]

L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $\mathbb R^3$ and a conjecture of De Giorgi, J. Am. Math. Soc., 13 (2000), 725-739.  doi: 10.1090/S0894-0347-00-00345-3.  Google Scholar

[4]

A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.  doi: 10.1002/cpa.3160410302.  Google Scholar

[5]

Z. Balanov, W. Krawcewicz and H. Steinlein, Applied Equivariant Degree, AIMS Series on Differential Equations & Dynamical Systems, Springfield, MO, 2006.  Google Scholar

[6]

K. Borsuk, Drei Sätze über die $n$-dimensionale Sphäre, Fund. Math., 20 (1933), 236-243. Google Scholar

[7]

B. BuffoniE. N. Dancer and J. F. Toland, The regularity and local bifurcation of steady periodic water waves, Arch. Ration. Mech. Anal., 152 (2000), 207-240.  doi: 10.1007/s002050000086.  Google Scholar

[8]

B. BuffoniE. N. Dancer and J. F. Toland, The sub-harmonic bifurcation of Stokes waves, Arch. Ration. Mech. Anal., 152 (2000), 241-271.  doi: 10.1007/s002050000087.  Google Scholar

[9]

D. Clark, A variant of the Lyusternik-Schnirelmann theory, Indiana Univ. Math. J., 22 (1973), 65-74.  doi: 10.1512/iumj.1973.22.22008.  Google Scholar

[10]

C. Conley, Isolated Invariant Sets and The Morse Index, CBMS regional conference series in mathematics No. 38., Providence: Amer. Math. Soc., 1978.  Google Scholar

[11]

M. ContiS. Terracini and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math., 195 (2005), 524-560.  doi: 10.1016/j.aim.2004.08.006.  Google Scholar

[12]

E. C. M. Crooks, E. N. Dancer and D. Hilhorst, On long-time dynamics for competition-diffusion systems with inhomogeneous Dirichlet boundary conditions, Topol. Methods Nonlinear Anal., 30 (2007), 1-36.  Google Scholar

[13]

M. CuestaD. de Figueiredo and J.-P. Gossez, The beginning of the Fucik Spectrum for the p-Laplacian, J. Differ. Equ., 159 (1999), 212-238.  doi: 10.1006/jdeq.1999.3645.  Google Scholar

[14]

E. N. Dancer, Bifurcation theory in real Banach space, Proc. London Math. Soc., (3) 23 (1971), 699-734. doi: 10.1112/plms/s3-23.4.699.  Google Scholar

[15]

E. N. Dancer, Bifurcation theory for analytic operators, Proc. London Math. Soc., (3) 26 (1973), 359-384. doi: 10.1112/plms/s3-26.2.359.  Google Scholar

[16]

E. N. Dancer, Global structure of the solutions of non-linear real analytic eigenvalue problems, Proc. London Math. Soc., (3) 27 (1973), 747-765. doi: 10.1112/plms/s3-27.4.747.  Google Scholar

[17]

E. N. Dancer, On the Dirichlet problem for weakly non-linear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 76 (1977), 283-300.  doi: 10.1017/S0308210500019648.  Google Scholar

[18]

E. N. Dancer, On the existence of solutions of certain asymptotically homogeneous problems, Math. Z., 177 (1981), 33-48.  doi: 10.1007/BF01214337.  Google Scholar

[19]

E. N. Dancer, Symmetries, degree, homotopy indices and asymptotically homogeneous problems, Nonlinear Anal., 6 (1982), 667-686.  doi: 10.1016/0362-546X(82)90037-2.  Google Scholar

[20]

E. N. Dancer, On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131-151.  doi: 10.1016/0022-247X(83)90098-7.  Google Scholar

[21]

E. N. Dancer, On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc., 284 (1984), 729-743.  doi: 10.1090/S0002-9947-1984-0743741-4.  Google Scholar

[22]

E. N. Dancer, On positive solutions of some pairs of differential equations, II, J. Differential Equations, 60 (1985), 236-258.  doi: 10.1016/0022-0396(85)90115-9.  Google Scholar

[23]

E. N. Dancer, A new degree for $S^1$-invariant gradient mappings and applications, Ann. Inst. H. Poincare Anal. Non Linaire, 2 (1985), 329-370.  doi: 10.1016/S0294-1449(16)30396-1.  Google Scholar

[24]

E. N. Dancer, Counterexamples to some conjectures on the number of solutions of nonlinear equations, Math. Ann., 272 (1985), 421-440.  doi: 10.1007/BF01455568.  Google Scholar

[25]

E. N. Dancer, Multiple fixed points of positive mappings, J. Reine Angew. Math., 371 (1986), 46-66.  doi: 10.1515/crll.1986.371.46.  Google Scholar

[26]

E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations, J. Differential Equations, 74 (1988), 120-156.  doi: 10.1016/0022-0396(88)90021-6.  Google Scholar

[27]

E. N. Dancer, On the influence of domain shape on the existence of large solutions of some superlinear problems, Math. Ann., 285 (1989), 647-669.  doi: 10.1007/BF01452052.  Google Scholar

[28]

E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations, Ⅱ, J. Differential Equations, 87 (1990), 316-339.  doi: 10.1016/0022-0396(90)90005-A.  Google Scholar

[29]

E. N. Dancer and J. F. Toland, Degree theory for orbits of prescribed period of flows with the first integral, Proc. London Math. Soc., 60 (1990), 549-580.  doi: 10.1112/plms/s3-60.3.549.  Google Scholar

[30]

E. N. Dancer and P. Hess, Stability of fixed points for order-preserving discrete-time dynamical systems, J. Reine Angew. Math., 419 (1991), 125-139.  Google Scholar

[31]

E. N. Dancer, Generic domain dependence for nonsmooth equations and the open set problem for jumping nonlinearities, Topol. Methods Nonlinear Anal., 1 (1993), 139-150.  doi: 10.12775/TMNA.1993.011.  Google Scholar

[32]

E. N. Dancer and Y. Du, Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differential Equations, 114 (1994), 434-475.  doi: 10.1006/jdeq.1994.1156.  Google Scholar

[33]

E. N. Dancer and Y. Du, Existence of changing sign solutions for some semilinear problems with jumping nonlinearities at zero, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 1165-1176.  doi: 10.1017/S0308210500030171.  Google Scholar

[34]

E. N. Dancer and P. Hess, Stable subharmonic solutions in periodic reaction-diffusion equations, J. Differential Equations, 108 (1994), 190-200.  doi: 10.1006/jdeq.1994.1032.  Google Scholar

[35]

E. N. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion. Ⅰ, General existence results. Nonlinear Anal., 24 (1995), 337-357. doi: 10.1016/0362-546X(94)E0063-M.  Google Scholar

[36]

E. N. Dancer, Domain variation for certain sets of solutions and applications, Top. Meth. Nonl. Anal., 7 (1996), 95-113.  doi: 10.12775/TMNA.1996.004.  Google Scholar

[37]

E. N. Dancer and D. Daners, Domain perturbation for elliptic equations subject to Robin boundary conditions, J. Differential Equations, 138 (1997), 86-132.  doi: 10.1006/jdeq.1997.3256.  Google Scholar

[38]

E. N. DancerD. HilhorstM. Mimura and L. A. Peletier, Spatial segregation limit of a competition-diffusion system, European J. Appl. Math., 10 (1999), 97-115.  doi: 10.1017/S0956792598003660.  Google Scholar

[39]

E. N. Dancer and K. Perera, Some remarks on the Fucik spectrum of the p-Laplacian and critical groups, J. Math. Anal. Appl., 254 (2001), 164-177.  doi: 10.1006/jmaa.2000.7228.  Google Scholar

[40]

E. N. Dancer and Z. Zhang, Dynamics of Lotka-Volterra competition systems with large interaction, J. Differential Equations, 182 (2002), 470-489.  doi: 10.1006/jdeq.2001.4102.  Google Scholar

[41]

E. N. Dancer, Real analyticity and non-degeneracy, Math. Ann., 325 (2003), 369-392.  doi: 10.1007/s00208-002-0352-2.  Google Scholar

[42]

E. N. Dancer, Stable and finite Morse index solutions on $R^n$ or on bounded domains with small diffusion, Ⅱ, Indiana Univ. Math. J., 53 (2004), 97-108.  doi: 10.1512/iumj.2004.53.2354.  Google Scholar

[43]

E. N. Dancer, Stable and finite Morse index solutions on $R^n$ or on bounded domains with small diffusion, Trans. Amer. Math. Soc., 357 (2005), 1225-1243.  doi: 10.1090/S0002-9947-04-03543-3.  Google Scholar

[44]

E. N. DancerK. Geba and S. Rybicki, Classification of homotopy classes of equivariant gradient map, Fund. Math., 185 (2005), 1-18.  doi: 10.4064/fm185-1-1.  Google Scholar

[45]

E. N. Dancer and S. Yan, On the superlinear Lazer-McKenna conjecture, Ⅱ, Comm. Partial Differential Equations, 30 (2005), 1331-1358.  doi: 10.1080/03605300500258865.  Google Scholar

[46]

E. N. Dancer and S. Yan, On the superlinear Lazer-McKenna conjecture, J. Differential Equations, 210 (2005), 317-351.  doi: 10.1016/j.jde.2004.07.017.  Google Scholar

[47]

E. N. Dancer, Finite Morse index solutions of exponential problems, Ann. Inst. H. Poincare Anal. Non Linaire, 25 (2008), 173-179.  doi: 10.1016/j.anihpc.2006.12.001.  Google Scholar

[48]

E. N. Dancer, Finite Morse index solutions of supercritical problems, J. Reine Angew. Math., 620 (2008), 213-233.  doi: 10.1515/CRELLE.2008.055.  Google Scholar

[49]

E. N. Dancer and S. Yan, The Lazer-McKenna conjecture and a free boundary problem in two dimensions, J. Lond. Math. Soc., (2) 78 (2008), 639-662. doi: 10.1112/jlms/jdn045.  Google Scholar

[50]

E. N. Dancer and A. Farina, On the classification of solutions of $u = e^u$ on $R^N$: stability outside a compact set and applications, Proc. Amer. Math. Soc., 137 (2009), 1333-1338.  doi: 10.1090/S0002-9939-08-09772-4.  Google Scholar

[51]

E. N. DancerY. Du and Z. Guo, Finite Morse index solutions of an elliptic equation with supercritical exponent, J. Differential Equations, 250 (2011), 3281-3310.  doi: 10.1016/j.jde.2011.02.005.  Google Scholar

[52]

E. N. DancerK. Wang and Z. Zhang, Uniform Holder estimate for singularly perturbed parabolic systems of Bose-Einstein condensates and competing species, J. Differential Equations, 251 (2011), 2737-2769.  doi: 10.1016/j.jde.2011.06.015.  Google Scholar

[53]

E. N. DancerK. Wang and Z. Zhang, The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture, J. Funct. Anal., 262 (2012), 1087-1131.  doi: 10.1016/j.jfa.2012.10.009.  Google Scholar

[54]

E. N. DancerK. Wang and Z. Zhang, Dynamics of strongly competing systems with many species, Tran. Amer. Math. Soc., 364 (2012), 961-1005.  doi: 10.1090/S0002-9947-2011-05488-7.  Google Scholar

[55]

E. N. Dancer, On the converse problem for the Gross-Pitaevskii equations with a large parameter, Discrete Contin. Dyn. Syst., 34 (2014), 2481-2493.  doi: 10.3934/dcds.2014.34.2481.  Google Scholar

[56]

E. N. Dancer, On a degree associated with the Gross-Pitaevskii system with a large parameter, Discrete Contin. Dyn. Syst. S, 2018, this issue. Google Scholar

[57]

D. Daners, Domain perturbation for linear and nonlinear parabolic equations, J. Differential Equations, 129 (1996), 358-402.  doi: 10.1006/jdeq.1996.0122.  Google Scholar

[58]

J. DávilaL. DupaigneK. Wang and J. Wei, A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem, Adv. Math., 258 (2014), 240-285.  doi: 10.1016/j.aim.2014.02.034.  Google Scholar

[59]

J. DávilaL. Dupaigne and J. Wei, On the fractional Lane-Emden equation, Trans. Amer. Math. Soc., 369 (2017), 6087-6104.  doi: 10.1090/tran/6872.  Google Scholar

[60]

D. de Figueiredo and J.-P. Gossez, On the first curve of the Fucik spectrum of an elliptic operator, Differ. Integral Equ., 7 (1994), 1285-1302.  Google Scholar

[61]

M. del PinoM. Kowalczyk and J. Wei, On De Giorgi's conjecture in dimension $N\geq 9$, Ann. of Math., 174 (2011), 1485-1569.  doi: 10.4007/annals.2011.174.3.3.  Google Scholar

[62]

P. Drabek and S. B. Robinson, A new and extended variational characterization of the Fucik spectrum with application to nonresonance and resonance problems, Calc. Var. Partial Differential Equations, 57 (2018), Art. 1, 27 pp. doi: 10.1007/s00526-017-1276-8.  Google Scholar

[63]

Y. Du, A degree-theoretic approach to N-species periodic competition systems on the whole $R^n$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 295-318.  doi: 10.1017/S0308210500021363.  Google Scholar

[64]

Y. Du, On Dancer's fixed point index formulas, Diff. Integral Eqns., 13 (2000), 145-158.  Google Scholar

[65]

Y. DuZ. Guo and K. Wang, Monotonicity formula and $\epsilon$-regularity of stable solutions to supercritical problems and applications to finite Morse index solutions, Calc. Var. Partial Differential Equations, 50 (2014), 615-638.  doi: 10.1007/s00526-013-0649-x.  Google Scholar

[66]

A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\mathbb R^N$, J. Math. Pures Appl., (9) 87 (2007), 537-561. doi: 10.1016/j.matpur.2007.03.001.  Google Scholar

[67]

F. Flucher and J. Wei, Asymptotic shape and location of small cores in elliptic free-boundary problems, Math. Z., 228 (1998), 638-703.  doi: 10.1007/PL00004636.  Google Scholar

[68]

S. Fucik, Boundary value problems with jumping nonlinearities, Casopis Pest. Mat., 101 (1976), 69-87.  Google Scholar

[69]

T. Gallouet and O. Kavian, Résultats dexistence et de non-existence pour certains problemes demi-linéaires a l'infini, Ann. Fac. Sci. Toulouse Math., (5) 3 (1981), 201-246. doi: 10.5802/afst.568.  Google Scholar

[70]

N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481-491.  doi: 10.1007/s002080050196.  Google Scholar

[71]

M. W. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., 383 (1988), 1-53.  doi: 10.1515/crll.1988.383.1.  Google Scholar

[72]

H. Hofer, Variational and topological methods in partially ordered Hilbert spaces, Math. Ann., 261 (1982), 493-514.  doi: 10.1007/BF01457453.  Google Scholar

[73]

J. Ize and A. Vignoli, Equivariant Degree Theory, De Gruyter Series in Nonlinear Analysis and Applications, 8. Walter de Gruyter & Co., Berlin, 2003. doi: 10.1515/9783110200027.  Google Scholar

[74]

A. Kushkuley and Z. Balanov, Geometric Methods for Degree Theory of Equivariant Maps, Lect. Notes in Math., 1632, Springer-Verlag, Berlin, 1996. doi: 10.1007/BFb0092822.  Google Scholar

[75]

A. C. Lazer and P. J. McKenna, On a conjecture related to the number of solutions of a nonlinear Dirichlet problem, Proc. Roy. Soc. Edinburgh Sect. A, 95 (1983), 275-283.  doi: 10.1017/S0308210500012993.  Google Scholar

[76]

C. Li and S. Li, The Fucik spectrum of Schrodinger operator and the existence of four solutions of Schrodinger equations with jumping nonlinearities, J. Differential Equations, 263 (2017), 7000-7097.  doi: 10.1016/j.jde.2017.07.038.  Google Scholar

[77]

G. LiS. Yan and J. Yang, The superlinear Lazer-McKenna conjecture for an elliptic problem with critical growth, Part Ⅱ, J. Differential Equations, 227 (2006), 301-332.  doi: 10.1016/j.jde.2006.02.011.  Google Scholar

[78]

G. LiS. Yan and J. Yang, The superlinear Lazer-McKenna conjecture for an elliptic problem with critical growth, Calc. Var. Partial Differential Equations, 28 (2007), 471-508.  doi: 10.1007/s00526-006-0051-z.  Google Scholar

[79]

H. Matano, Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1984), 645-673.  Google Scholar

[80]

R. Molle and D. Passaseo, Infinitely many new curves of the Fucik spectrum, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 1145-1171. doi: 10.1016/j.anihpc.2014.05.007.  Google Scholar

[81]

B. NorisH. TavaresS. Terracini and G. Verzini, Uniform Hölder bounds for non-linear Schrödinger systems with strong competition, Commun. Pure Appl. Math., 63 (2010), 267-302.  doi: 10.1002/cpa.20309.  Google Scholar

[82]

R. D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura Appl., (4) 89 (1971), 217-258. doi: 10.1007/BF02414948.  Google Scholar

[83]

K. PereraM. Squassina and Y. Yang, A note on the Dancer-Fucik spectra of the fractional p-Laplacian and Laplacian operators, Adv. Nonlinear Anal., 4 (2015), 13-23.  doi: 10.1515/anona-2014-0038.  Google Scholar

[84]

P. Rabinowitz, A bifurcation theorem for potential operators, J. Funct. Anal., 25 (1977), 412-424.  doi: 10.1016/0022-1236(77)90047-7.  Google Scholar

[85]

O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math., (2) 169 (2009), 41-78. doi: 10.4007/annals.2009.169.41.  Google Scholar

[86]

M. Schechter, The Fucik spectrum, Indiana Univ. Math. J., 43 (1994), 1139-1157.  doi: 10.1512/iumj.1994.43.43050.  Google Scholar

[87]

H. L. Smith, Monotone Dynamical Systems, An introduction to the theory of competitive and cooperative systems, Mathematical Surveys and Monographs, 41. American Mathematical Society, Providence, RI, 1995.  Google Scholar

[88]

N. Soave and A. Zilio, Uniform bounds for strongly competing systems: The optimal Lipschitz case, Arch. Ration. Mech. Anal., 218 (2015), 647-697.  doi: 10.1007/s00205-015-0867-9.  Google Scholar

[89]

J. Wei and S. Yan, The Lazer-McKenna conjecture: the critical case, J. Funct. Anal., 244 (2007), 639-667.  doi: 10.1016/j.jfa.2006.11.002.  Google Scholar

show all references

References:
[1]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.  doi: 10.1137/1018114.  Google Scholar

[2]

A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl.(4), 93 (1972), 231-246. doi: 10.1007/BF02412022.  Google Scholar

[3]

L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $\mathbb R^3$ and a conjecture of De Giorgi, J. Am. Math. Soc., 13 (2000), 725-739.  doi: 10.1090/S0894-0347-00-00345-3.  Google Scholar

[4]

A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.  doi: 10.1002/cpa.3160410302.  Google Scholar

[5]

Z. Balanov, W. Krawcewicz and H. Steinlein, Applied Equivariant Degree, AIMS Series on Differential Equations & Dynamical Systems, Springfield, MO, 2006.  Google Scholar

[6]

K. Borsuk, Drei Sätze über die $n$-dimensionale Sphäre, Fund. Math., 20 (1933), 236-243. Google Scholar

[7]

B. BuffoniE. N. Dancer and J. F. Toland, The regularity and local bifurcation of steady periodic water waves, Arch. Ration. Mech. Anal., 152 (2000), 207-240.  doi: 10.1007/s002050000086.  Google Scholar

[8]

B. BuffoniE. N. Dancer and J. F. Toland, The sub-harmonic bifurcation of Stokes waves, Arch. Ration. Mech. Anal., 152 (2000), 241-271.  doi: 10.1007/s002050000087.  Google Scholar

[9]

D. Clark, A variant of the Lyusternik-Schnirelmann theory, Indiana Univ. Math. J., 22 (1973), 65-74.  doi: 10.1512/iumj.1973.22.22008.  Google Scholar

[10]

C. Conley, Isolated Invariant Sets and The Morse Index, CBMS regional conference series in mathematics No. 38., Providence: Amer. Math. Soc., 1978.  Google Scholar

[11]

M. ContiS. Terracini and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math., 195 (2005), 524-560.  doi: 10.1016/j.aim.2004.08.006.  Google Scholar

[12]

E. C. M. Crooks, E. N. Dancer and D. Hilhorst, On long-time dynamics for competition-diffusion systems with inhomogeneous Dirichlet boundary conditions, Topol. Methods Nonlinear Anal., 30 (2007), 1-36.  Google Scholar

[13]

M. CuestaD. de Figueiredo and J.-P. Gossez, The beginning of the Fucik Spectrum for the p-Laplacian, J. Differ. Equ., 159 (1999), 212-238.  doi: 10.1006/jdeq.1999.3645.  Google Scholar

[14]

E. N. Dancer, Bifurcation theory in real Banach space, Proc. London Math. Soc., (3) 23 (1971), 699-734. doi: 10.1112/plms/s3-23.4.699.  Google Scholar

[15]

E. N. Dancer, Bifurcation theory for analytic operators, Proc. London Math. Soc., (3) 26 (1973), 359-384. doi: 10.1112/plms/s3-26.2.359.  Google Scholar

[16]

E. N. Dancer, Global structure of the solutions of non-linear real analytic eigenvalue problems, Proc. London Math. Soc., (3) 27 (1973), 747-765. doi: 10.1112/plms/s3-27.4.747.  Google Scholar

[17]

E. N. Dancer, On the Dirichlet problem for weakly non-linear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 76 (1977), 283-300.  doi: 10.1017/S0308210500019648.  Google Scholar

[18]

E. N. Dancer, On the existence of solutions of certain asymptotically homogeneous problems, Math. Z., 177 (1981), 33-48.  doi: 10.1007/BF01214337.  Google Scholar

[19]

E. N. Dancer, Symmetries, degree, homotopy indices and asymptotically homogeneous problems, Nonlinear Anal., 6 (1982), 667-686.  doi: 10.1016/0362-546X(82)90037-2.  Google Scholar

[20]

E. N. Dancer, On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131-151.  doi: 10.1016/0022-247X(83)90098-7.  Google Scholar

[21]

E. N. Dancer, On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc., 284 (1984), 729-743.  doi: 10.1090/S0002-9947-1984-0743741-4.  Google Scholar

[22]

E. N. Dancer, On positive solutions of some pairs of differential equations, II, J. Differential Equations, 60 (1985), 236-258.  doi: 10.1016/0022-0396(85)90115-9.  Google Scholar

[23]

E. N. Dancer, A new degree for $S^1$-invariant gradient mappings and applications, Ann. Inst. H. Poincare Anal. Non Linaire, 2 (1985), 329-370.  doi: 10.1016/S0294-1449(16)30396-1.  Google Scholar

[24]

E. N. Dancer, Counterexamples to some conjectures on the number of solutions of nonlinear equations, Math. Ann., 272 (1985), 421-440.  doi: 10.1007/BF01455568.  Google Scholar

[25]

E. N. Dancer, Multiple fixed points of positive mappings, J. Reine Angew. Math., 371 (1986), 46-66.  doi: 10.1515/crll.1986.371.46.  Google Scholar

[26]

E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations, J. Differential Equations, 74 (1988), 120-156.  doi: 10.1016/0022-0396(88)90021-6.  Google Scholar

[27]

E. N. Dancer, On the influence of domain shape on the existence of large solutions of some superlinear problems, Math. Ann., 285 (1989), 647-669.  doi: 10.1007/BF01452052.  Google Scholar

[28]

E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations, Ⅱ, J. Differential Equations, 87 (1990), 316-339.  doi: 10.1016/0022-0396(90)90005-A.  Google Scholar

[29]

E. N. Dancer and J. F. Toland, Degree theory for orbits of prescribed period of flows with the first integral, Proc. London Math. Soc., 60 (1990), 549-580.  doi: 10.1112/plms/s3-60.3.549.  Google Scholar

[30]

E. N. Dancer and P. Hess, Stability of fixed points for order-preserving discrete-time dynamical systems, J. Reine Angew. Math., 419 (1991), 125-139.  Google Scholar

[31]

E. N. Dancer, Generic domain dependence for nonsmooth equations and the open set problem for jumping nonlinearities, Topol. Methods Nonlinear Anal., 1 (1993), 139-150.  doi: 10.12775/TMNA.1993.011.  Google Scholar

[32]

E. N. Dancer and Y. Du, Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differential Equations, 114 (1994), 434-475.  doi: 10.1006/jdeq.1994.1156.  Google Scholar

[33]

E. N. Dancer and Y. Du, Existence of changing sign solutions for some semilinear problems with jumping nonlinearities at zero, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 1165-1176.  doi: 10.1017/S0308210500030171.  Google Scholar

[34]

E. N. Dancer and P. Hess, Stable subharmonic solutions in periodic reaction-diffusion equations, J. Differential Equations, 108 (1994), 190-200.  doi: 10.1006/jdeq.1994.1032.  Google Scholar

[35]

E. N. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion. Ⅰ, General existence results. Nonlinear Anal., 24 (1995), 337-357. doi: 10.1016/0362-546X(94)E0063-M.  Google Scholar

[36]

E. N. Dancer, Domain variation for certain sets of solutions and applications, Top. Meth. Nonl. Anal., 7 (1996), 95-113.  doi: 10.12775/TMNA.1996.004.  Google Scholar

[37]

E. N. Dancer and D. Daners, Domain perturbation for elliptic equations subject to Robin boundary conditions, J. Differential Equations, 138 (1997), 86-132.  doi: 10.1006/jdeq.1997.3256.  Google Scholar

[38]

E. N. DancerD. HilhorstM. Mimura and L. A. Peletier, Spatial segregation limit of a competition-diffusion system, European J. Appl. Math., 10 (1999), 97-115.  doi: 10.1017/S0956792598003660.  Google Scholar

[39]

E. N. Dancer and K. Perera, Some remarks on the Fucik spectrum of the p-Laplacian and critical groups, J. Math. Anal. Appl., 254 (2001), 164-177.  doi: 10.1006/jmaa.2000.7228.  Google Scholar

[40]

E. N. Dancer and Z. Zhang, Dynamics of Lotka-Volterra competition systems with large interaction, J. Differential Equations, 182 (2002), 470-489.  doi: 10.1006/jdeq.2001.4102.  Google Scholar

[41]

E. N. Dancer, Real analyticity and non-degeneracy, Math. Ann., 325 (2003), 369-392.  doi: 10.1007/s00208-002-0352-2.  Google Scholar

[42]

E. N. Dancer, Stable and finite Morse index solutions on $R^n$ or on bounded domains with small diffusion, Ⅱ, Indiana Univ. Math. J., 53 (2004), 97-108.  doi: 10.1512/iumj.2004.53.2354.  Google Scholar

[43]

E. N. Dancer, Stable and finite Morse index solutions on $R^n$ or on bounded domains with small diffusion, Trans. Amer. Math. Soc., 357 (2005), 1225-1243.  doi: 10.1090/S0002-9947-04-03543-3.  Google Scholar

[44]

E. N. DancerK. Geba and S. Rybicki, Classification of homotopy classes of equivariant gradient map, Fund. Math., 185 (2005), 1-18.  doi: 10.4064/fm185-1-1.  Google Scholar

[45]

E. N. Dancer and S. Yan, On the superlinear Lazer-McKenna conjecture, Ⅱ, Comm. Partial Differential Equations, 30 (2005), 1331-1358.  doi: 10.1080/03605300500258865.  Google Scholar

[46]

E. N. Dancer and S. Yan, On the superlinear Lazer-McKenna conjecture, J. Differential Equations, 210 (2005), 317-351.  doi: 10.1016/j.jde.2004.07.017.  Google Scholar

[47]

E. N. Dancer, Finite Morse index solutions of exponential problems, Ann. Inst. H. Poincare Anal. Non Linaire, 25 (2008), 173-179.  doi: 10.1016/j.anihpc.2006.12.001.  Google Scholar

[48]

E. N. Dancer, Finite Morse index solutions of supercritical problems, J. Reine Angew. Math., 620 (2008), 213-233.  doi: 10.1515/CRELLE.2008.055.  Google Scholar

[49]

E. N. Dancer and S. Yan, The Lazer-McKenna conjecture and a free boundary problem in two dimensions, J. Lond. Math. Soc., (2) 78 (2008), 639-662. doi: 10.1112/jlms/jdn045.  Google Scholar

[50]

E. N. Dancer and A. Farina, On the classification of solutions of $u = e^u$ on $R^N$: stability outside a compact set and applications, Proc. Amer. Math. Soc., 137 (2009), 1333-1338.  doi: 10.1090/S0002-9939-08-09772-4.  Google Scholar

[51]

E. N. DancerY. Du and Z. Guo, Finite Morse index solutions of an elliptic equation with supercritical exponent, J. Differential Equations, 250 (2011), 3281-3310.  doi: 10.1016/j.jde.2011.02.005.  Google Scholar

[52]

E. N. DancerK. Wang and Z. Zhang, Uniform Holder estimate for singularly perturbed parabolic systems of Bose-Einstein condensates and competing species, J. Differential Equations, 251 (2011), 2737-2769.  doi: 10.1016/j.jde.2011.06.015.  Google Scholar

[53]

E. N. DancerK. Wang and Z. Zhang, The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture, J. Funct. Anal., 262 (2012), 1087-1131.  doi: 10.1016/j.jfa.2012.10.009.  Google Scholar

[54]

E. N. DancerK. Wang and Z. Zhang, Dynamics of strongly competing systems with many species, Tran. Amer. Math. Soc., 364 (2012), 961-1005.  doi: 10.1090/S0002-9947-2011-05488-7.  Google Scholar

[55]

E. N. Dancer, On the converse problem for the Gross-Pitaevskii equations with a large parameter, Discrete Contin. Dyn. Syst., 34 (2014), 2481-2493.  doi: 10.3934/dcds.2014.34.2481.  Google Scholar

[56]

E. N. Dancer, On a degree associated with the Gross-Pitaevskii system with a large parameter, Discrete Contin. Dyn. Syst. S, 2018, this issue. Google Scholar

[57]

D. Daners, Domain perturbation for linear and nonlinear parabolic equations, J. Differential Equations, 129 (1996), 358-402.  doi: 10.1006/jdeq.1996.0122.  Google Scholar

[58]

J. DávilaL. DupaigneK. Wang and J. Wei, A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem, Adv. Math., 258 (2014), 240-285.  doi: 10.1016/j.aim.2014.02.034.  Google Scholar

[59]

J. DávilaL. Dupaigne and J. Wei, On the fractional Lane-Emden equation, Trans. Amer. Math. Soc., 369 (2017), 6087-6104.  doi: 10.1090/tran/6872.  Google Scholar

[60]

D. de Figueiredo and J.-P. Gossez, On the first curve of the Fucik spectrum of an elliptic operator, Differ. Integral Equ., 7 (1994), 1285-1302.  Google Scholar

[61]

M. del PinoM. Kowalczyk and J. Wei, On De Giorgi's conjecture in dimension $N\geq 9$, Ann. of Math., 174 (2011), 1485-1569.  doi: 10.4007/annals.2011.174.3.3.  Google Scholar

[62]

P. Drabek and S. B. Robinson, A new and extended variational characterization of the Fucik spectrum with application to nonresonance and resonance problems, Calc. Var. Partial Differential Equations, 57 (2018), Art. 1, 27 pp. doi: 10.1007/s00526-017-1276-8.  Google Scholar

[63]

Y. Du, A degree-theoretic approach to N-species periodic competition systems on the whole $R^n$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 295-318.  doi: 10.1017/S0308210500021363.  Google Scholar

[64]

Y. Du, On Dancer's fixed point index formulas, Diff. Integral Eqns., 13 (2000), 145-158.  Google Scholar

[65]

Y. DuZ. Guo and K. Wang, Monotonicity formula and $\epsilon$-regularity of stable solutions to supercritical problems and applications to finite Morse index solutions, Calc. Var. Partial Differential Equations, 50 (2014), 615-638.  doi: 10.1007/s00526-013-0649-x.  Google Scholar

[66]

A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\mathbb R^N$, J. Math. Pures Appl., (9) 87 (2007), 537-561. doi: 10.1016/j.matpur.2007.03.001.  Google Scholar

[67]

F. Flucher and J. Wei, Asymptotic shape and location of small cores in elliptic free-boundary problems, Math. Z., 228 (1998), 638-703.  doi: 10.1007/PL00004636.  Google Scholar

[68]

S. Fucik, Boundary value problems with jumping nonlinearities, Casopis Pest. Mat., 101 (1976), 69-87.  Google Scholar

[69]

T. Gallouet and O. Kavian, Résultats dexistence et de non-existence pour certains problemes demi-linéaires a l'infini, Ann. Fac. Sci. Toulouse Math., (5) 3 (1981), 201-246. doi: 10.5802/afst.568.  Google Scholar

[70]

N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481-491.  doi: 10.1007/s002080050196.  Google Scholar

[71]

M. W. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., 383 (1988), 1-53.  doi: 10.1515/crll.1988.383.1.  Google Scholar

[72]

H. Hofer, Variational and topological methods in partially ordered Hilbert spaces, Math. Ann., 261 (1982), 493-514.  doi: 10.1007/BF01457453.  Google Scholar

[73]

J. Ize and A. Vignoli, Equivariant Degree Theory, De Gruyter Series in Nonlinear Analysis and Applications, 8. Walter de Gruyter & Co., Berlin, 2003. doi: 10.1515/9783110200027.  Google Scholar

[74]

A. Kushkuley and Z. Balanov, Geometric Methods for Degree Theory of Equivariant Maps, Lect. Notes in Math., 1632, Springer-Verlag, Berlin, 1996. doi: 10.1007/BFb0092822.  Google Scholar

[75]

A. C. Lazer and P. J. McKenna, On a conjecture related to the number of solutions of a nonlinear Dirichlet problem, Proc. Roy. Soc. Edinburgh Sect. A, 95 (1983), 275-283.  doi: 10.1017/S0308210500012993.  Google Scholar

[76]

C. Li and S. Li, The Fucik spectrum of Schrodinger operator and the existence of four solutions of Schrodinger equations with jumping nonlinearities, J. Differential Equations, 263 (2017), 7000-7097.  doi: 10.1016/j.jde.2017.07.038.  Google Scholar

[77]

G. LiS. Yan and J. Yang, The superlinear Lazer-McKenna conjecture for an elliptic problem with critical growth, Part Ⅱ, J. Differential Equations, 227 (2006), 301-332.  doi: 10.1016/j.jde.2006.02.011.  Google Scholar

[78]

G. LiS. Yan and J. Yang, The superlinear Lazer-McKenna conjecture for an elliptic problem with critical growth, Calc. Var. Partial Differential Equations, 28 (2007), 471-508.  doi: 10.1007/s00526-006-0051-z.  Google Scholar

[79]

H. Matano, Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1984), 645-673.  Google Scholar

[80]

R. Molle and D. Passaseo, Infinitely many new curves of the Fucik spectrum, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 1145-1171. doi: 10.1016/j.anihpc.2014.05.007.  Google Scholar

[81]

B. NorisH. TavaresS. Terracini and G. Verzini, Uniform Hölder bounds for non-linear Schrödinger systems with strong competition, Commun. Pure Appl. Math., 63 (2010), 267-302.  doi: 10.1002/cpa.20309.  Google Scholar

[82]

R. D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura Appl., (4) 89 (1971), 217-258. doi: 10.1007/BF02414948.  Google Scholar

[83]

K. PereraM. Squassina and Y. Yang, A note on the Dancer-Fucik spectra of the fractional p-Laplacian and Laplacian operators, Adv. Nonlinear Anal., 4 (2015), 13-23.  doi: 10.1515/anona-2014-0038.  Google Scholar

[84]

P. Rabinowitz, A bifurcation theorem for potential operators, J. Funct. Anal., 25 (1977), 412-424.  doi: 10.1016/0022-1236(77)90047-7.  Google Scholar

[85]

O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math., (2) 169 (2009), 41-78. doi: 10.4007/annals.2009.169.41.  Google Scholar

[86]

M. Schechter, The Fucik spectrum, Indiana Univ. Math. J., 43 (1994), 1139-1157.  doi: 10.1512/iumj.1994.43.43050.  Google Scholar

[87]

H. L. Smith, Monotone Dynamical Systems, An introduction to the theory of competitive and cooperative systems, Mathematical Surveys and Monographs, 41. American Mathematical Society, Providence, RI, 1995.  Google Scholar

[88]

N. Soave and A. Zilio, Uniform bounds for strongly competing systems: The optimal Lipschitz case, Arch. Ration. Mech. Anal., 218 (2015), 647-697.  doi: 10.1007/s00205-015-0867-9.  Google Scholar

[89]

J. Wei and S. Yan, The Lazer-McKenna conjecture: the critical case, J. Funct. Anal., 244 (2007), 639-667.  doi: 10.1016/j.jfa.2006.11.002.  Google Scholar

[1]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[2]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[3]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[4]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[5]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[6]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[7]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[8]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[9]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[10]

The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013

[11]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[12]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[13]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[14]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[15]

Yiwen Tao, Jingli Ren. The stability and bifurcation of homogeneous diffusive predator–prey systems with spatio–temporal delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021038

[16]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[17]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[18]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[19]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[20]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (327)
  • HTML views (542)
  • Cited by (0)

Other articles
by authors

[Back to Top]