November  2019, 12(7): 1841-1850. doi: 10.3934/dcdss.2019121

Subharmonic solutions for a class of Lagrangian systems

1. 

Department of Mathematics, Faculty of Sciences, University of Monastir, 5019 Monastir, Tunisia

2. 

Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

* Corresponding author: Marek Izydorek

Received  April 2018 Revised  May 2018 Published  December 2018

Fund Project: M. Izydorek and J. Janczewska are supported by Grant BEETHOVEN2 of the National Science Centre, Poland, no. 2016/23/G/ST1/04081

We prove that second order Hamiltonian systems $ -\ddot{u} = V_{u}(t,u) $ with a potential $ V\colon \mathbb{R} \times \mathbb{R} ^N\to \mathbb{R} $ of class $ C^1 $, periodic in time and superquadratic at infinity with respect to the space variable have subharmonic solutions. Our intention is to generalise a result on subharmonics for Hamiltonian systems with a potential satisfying the global Ambrosetti-Rabinowitz condition from [14]. Indeed, we weaken the latter condition in a neighbourhood of $ 0\in \mathbb{R} ^N $. We will also discuss when subharmonics pass to a nontrivial homoclinic orbit.

Citation: Anouar Bahrouni, Marek Izydorek, Joanna Janczewska. Subharmonic solutions for a class of Lagrangian systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1841-1850. doi: 10.3934/dcdss.2019121
References:
[1]

A. Abbondandolo, Morse Theory for Hamiltonian Systems, Chapman and Hall/CRC Research Notes in Mathematics 425, Chapman and Hall/CRC, Boca Raton, FL, 2001. Google Scholar

[2]

A. Ambrosetti and V. Coti Zelati, Periodic Solutions of Singular Lagrangian Systems, Progr. Nonlinear Differential Equations Appl. 10, Birkh ser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0319-3. Google Scholar

[3]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381. doi: 10.1016/0022-1236(73)90051-7. Google Scholar

[4]

K. Ch. Chang, Infinite-Dimensional Morse Theory and Multiple Solution Problems, Progr. Nonlinear Differential Equations Appl. 6, Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0385-8. Google Scholar

[5]

J. CiesielskiJ. Janczewska and N. Waterstraat, On the existence of homoclinic type solutions of inhomogenous Lagrangian systems, Differential and Integral Equations, 30 (2017), 259-272. Google Scholar

[6]

K. GębaM. Izydorek and A. Pruszko, The Conley index in Hilbert spaces and its applications, Studia Math., 134 (1999), 217-233. Google Scholar

[7]

M. Izydorek, A cohomological Conley index in Hilbert spaces and applications to strongly indefinite problems, J. Differential Equations, 170 (2001), 22-50. doi: 10.1006/jdeq.2000.3818. Google Scholar

[8]

M. Izydorek, Equivariant Conley index in Hilbert spaces and applications to strongly indefinite problems, Nonl. Analysis Ser. A: Theory Methods, 51 (2002), 33-66. doi: 10.1016/S0362-546X(01)00811-2. Google Scholar

[9]

M. Izydorek and J. Janczewska, Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 219 (2005), 375-389. doi: 10.1016/j.jde.2005.06.029. Google Scholar

[10]

M. Izydorek and J. Janczewska, The shadowing chain lemma for singular Hamiltonian systems involving strong forces, Cent. Eur. J. Math., 10 (2012), 1928-1939. doi: 10.2478/s11533-012-0107-6. Google Scholar

[11]

J. Janczewska, An approximative scheme of finding almost homoclinic solutions for a class of Newtonian systems, Topol. Methods Nonlinear Anal., 33 (2009), 169-177. doi: 10.12775/TMNA.2009.012. Google Scholar

[12]

J. Janczewska, Homoclinic solutions for a class of autonomous second order Hamiltonian systems with a superquadratic potential, Topol. Methods Nonlinear Anal., 36 (2010), 19-26. Google Scholar

[13]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Appl. Math. Sci. 74, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2061-7. Google Scholar

[14]

P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A, 114 (1990), 33-38. doi: 10.1017/S0308210500024240. Google Scholar

[15]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics 65, Amer. Math. Soc., Providence, RI, 1986. doi: 10.1090/cbms/065. Google Scholar

[16]

E. Serra, M. Tarallo and S. Terracini, On the existence of homoclinic solutions for almost periodic second order systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 783-812. doi: 10.1016/S0294-1449(16)30123-8. Google Scholar

[17]

K. Tanaka, Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 427-438. doi: 10.1016/S0294-1449(16)30285-2. Google Scholar

show all references

References:
[1]

A. Abbondandolo, Morse Theory for Hamiltonian Systems, Chapman and Hall/CRC Research Notes in Mathematics 425, Chapman and Hall/CRC, Boca Raton, FL, 2001. Google Scholar

[2]

A. Ambrosetti and V. Coti Zelati, Periodic Solutions of Singular Lagrangian Systems, Progr. Nonlinear Differential Equations Appl. 10, Birkh ser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0319-3. Google Scholar

[3]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381. doi: 10.1016/0022-1236(73)90051-7. Google Scholar

[4]

K. Ch. Chang, Infinite-Dimensional Morse Theory and Multiple Solution Problems, Progr. Nonlinear Differential Equations Appl. 6, Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0385-8. Google Scholar

[5]

J. CiesielskiJ. Janczewska and N. Waterstraat, On the existence of homoclinic type solutions of inhomogenous Lagrangian systems, Differential and Integral Equations, 30 (2017), 259-272. Google Scholar

[6]

K. GębaM. Izydorek and A. Pruszko, The Conley index in Hilbert spaces and its applications, Studia Math., 134 (1999), 217-233. Google Scholar

[7]

M. Izydorek, A cohomological Conley index in Hilbert spaces and applications to strongly indefinite problems, J. Differential Equations, 170 (2001), 22-50. doi: 10.1006/jdeq.2000.3818. Google Scholar

[8]

M. Izydorek, Equivariant Conley index in Hilbert spaces and applications to strongly indefinite problems, Nonl. Analysis Ser. A: Theory Methods, 51 (2002), 33-66. doi: 10.1016/S0362-546X(01)00811-2. Google Scholar

[9]

M. Izydorek and J. Janczewska, Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 219 (2005), 375-389. doi: 10.1016/j.jde.2005.06.029. Google Scholar

[10]

M. Izydorek and J. Janczewska, The shadowing chain lemma for singular Hamiltonian systems involving strong forces, Cent. Eur. J. Math., 10 (2012), 1928-1939. doi: 10.2478/s11533-012-0107-6. Google Scholar

[11]

J. Janczewska, An approximative scheme of finding almost homoclinic solutions for a class of Newtonian systems, Topol. Methods Nonlinear Anal., 33 (2009), 169-177. doi: 10.12775/TMNA.2009.012. Google Scholar

[12]

J. Janczewska, Homoclinic solutions for a class of autonomous second order Hamiltonian systems with a superquadratic potential, Topol. Methods Nonlinear Anal., 36 (2010), 19-26. Google Scholar

[13]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Appl. Math. Sci. 74, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2061-7. Google Scholar

[14]

P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A, 114 (1990), 33-38. doi: 10.1017/S0308210500024240. Google Scholar

[15]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics 65, Amer. Math. Soc., Providence, RI, 1986. doi: 10.1090/cbms/065. Google Scholar

[16]

E. Serra, M. Tarallo and S. Terracini, On the existence of homoclinic solutions for almost periodic second order systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 783-812. doi: 10.1016/S0294-1449(16)30123-8. Google Scholar

[17]

K. Tanaka, Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 427-438. doi: 10.1016/S0294-1449(16)30285-2. Google Scholar

[1]

Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807

[2]

Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic & Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050

[3]

Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121

[4]

Zhihong Xia. Homoclinic points and intersections of Lagrangian submanifold. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 243-253. doi: 10.3934/dcds.2000.6.243

[5]

Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021

[6]

Oksana Koltsova, Lev Lerman. Hamiltonian dynamics near nontransverse homoclinic orbit to saddle-focus equilibrium. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 883-913. doi: 10.3934/dcds.2009.25.883

[7]

Benoît Grébert, Tiphaine Jézéquel, Laurent Thomann. Dynamics of Klein-Gordon on a compact surface near a homoclinic orbit. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3485-3510. doi: 10.3934/dcds.2014.34.3485

[8]

Shigui Ruan, Junjie Wei, Jianhong Wu. Bifurcation from a homoclinic orbit in partial functional differential equations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1293-1322. doi: 10.3934/dcds.2003.9.1293

[9]

W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351

[10]

Zhirong He, Weinian Zhang. Critical periods of a periodic annulus linking to equilibria at infinity in a cubic system. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 841-854. doi: 10.3934/dcds.2009.24.841

[11]

Jingli Ren, Zhibo Cheng, Stefan Siegmund. Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 385-392. doi: 10.3934/dcdsb.2011.16.385

[12]

Peter Giesl. Converse theorem on a global contraction metric for a periodic orbit. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5339-5363. doi: 10.3934/dcds.2019218

[13]

Boris Buffoni, Laurent Landry. Multiplicity of homoclinic orbits in quasi-linear autonomous Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 75-116. doi: 10.3934/dcds.2010.27.75

[14]

Wenhua Qiu, Jianguo Si. On small perturbation of four-dimensional quasi-periodic system with degenerate equilibrium point. Communications on Pure & Applied Analysis, 2015, 14 (2) : 421-437. doi: 10.3934/cpaa.2015.14.421

[15]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[16]

Gautier Picot. Energy-minimal transfers in the vicinity of the lagrangian point $L_1$. Conference Publications, 2011, 2011 (Special) : 1196-1205. doi: 10.3934/proc.2011.2011.1196

[17]

Wenxiang Sun, Yun Yang. Hyperbolic periodic points for chain hyperbolic homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3911-3925. doi: 10.3934/dcds.2016.36.3911

[18]

Samir Adly, Daniel Goeleven, Dumitru Motreanu. Periodic and homoclinic solutions for a class of unilateral problems. Discrete & Continuous Dynamical Systems - A, 1997, 3 (4) : 579-590. doi: 10.3934/dcds.1997.3.579

[19]

Jingxian Sun, Shouchuan Hu. Flow-invariant sets and critical point theory. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 483-496. doi: 10.3934/dcds.2003.9.483

[20]

Antonio Ambrosetti, Massimiliano Berti. Applications of critical point theory to homoclinics and complex dynamics. Conference Publications, 1998, 1998 (Special) : 72-78. doi: 10.3934/proc.1998.1998.72

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (74)
  • HTML views (488)
  • Cited by (0)

[Back to Top]