• Previous Article
    Long-time behavior of positive solutions of a differential equation with state-dependent delay
  • DCDS-S Home
  • This Issue
  • Next Article
    Existence of strictly decreasing positive solutions of linear differential equations of neutral type
doi: 10.3934/dcdss.2020003

A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback

Department of Mathematics, Gettysburg College, 300 N. Washington St., Gettysburg, PA 17325, USA

Received  April 2017 Revised  July 2017 Published  January 2019

We consider a real-valued differential equation
$ \begin{equation*} x'(t) = f(x(t - d(x_t))), \end{equation*} $
with strictly monotonic negative feedback and state-dependent delay, that has a nontrivial periodic solution
$ q $
for which the planar map
$ q_t \mapsto (q(t),q(t - d(q_t))) $
is not injective on the orbit of
$ q $
in phase space. This solution demonstrates that Mallet-Paret and Sell's version of the Poincaré-Bendixson theorem for delay equations with constant delay and monotonic feedback does not carry over entirely to the state-dependent delay case.
Citation: Benjamin B. Kennedy. A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020003
References:
[1]

B. B. Kennedy, The Poincaré-Bendixson theorem for a class of delay equations with state-dependent delay and monotonic feedback, preprint.

[2]

T. Krisztin and O. Arino, The two-dimensional attractor of a differential equation with state-dependent delay, Journal of Dynamics and Differential Equations, 13 (2001), 453-522. doi: 10.1023/A:1016635223074.

[3]

J. Mallet-Paret and R. D. Nussbaum, Boundary layer phenomena for differential-delay equations with state-dependent time lags, I, Arch. Rational Mech. Anal., 120 (1992), 99-146. doi: 10.1007/BF00418497.

[4]

J. Mallet-Paret and G. R. Sell, Systems of differential delay equations: The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay, Journal of Differential Equations, 125 (1996), 441-489. doi: 10.1006/jdeq.1996.0037.

[5]

H.-O. Walther, Algebraic-delay differential systems, state-dependent delay, and temporal order of reactions, Journal of Dynamics and Differential Equations, 21 (2009), 195-232. doi: 10.1007/s10884-009-9129-6.

[6]

H.-O. Walther, A homoclinic loop generated by variable delay, Journal of Dynamics and Differential Equations, 27 (2015), 1101-1139. doi: 10.1007/s10884-013-9333-2.

show all references

References:
[1]

B. B. Kennedy, The Poincaré-Bendixson theorem for a class of delay equations with state-dependent delay and monotonic feedback, preprint.

[2]

T. Krisztin and O. Arino, The two-dimensional attractor of a differential equation with state-dependent delay, Journal of Dynamics and Differential Equations, 13 (2001), 453-522. doi: 10.1023/A:1016635223074.

[3]

J. Mallet-Paret and R. D. Nussbaum, Boundary layer phenomena for differential-delay equations with state-dependent time lags, I, Arch. Rational Mech. Anal., 120 (1992), 99-146. doi: 10.1007/BF00418497.

[4]

J. Mallet-Paret and G. R. Sell, Systems of differential delay equations: The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay, Journal of Differential Equations, 125 (1996), 441-489. doi: 10.1006/jdeq.1996.0037.

[5]

H.-O. Walther, Algebraic-delay differential systems, state-dependent delay, and temporal order of reactions, Journal of Dynamics and Differential Equations, 21 (2009), 195-232. doi: 10.1007/s10884-009-9129-6.

[6]

H.-O. Walther, A homoclinic loop generated by variable delay, Journal of Dynamics and Differential Equations, 27 (2015), 1101-1139. doi: 10.1007/s10884-013-9333-2.

[1]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[2]

Odo Diekmann, Karolína Korvasová. Linearization of solution operators for state-dependent delay equations: A simple example. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 137-149. doi: 10.3934/dcds.2016.36.137

[3]

William Clark, Anthony Bloch, Leonardo Colombo. A Poincaré-Bendixson theorem for hybrid systems. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019028

[4]

Benjamin B. Kennedy. Multiple periodic solutions of state-dependent threshold delay equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1801-1833. doi: 10.3934/dcds.2012.32.1801

[5]

Hans-Otto Walther. On Poisson's state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 365-379. doi: 10.3934/dcds.2013.33.365

[6]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[7]

Benjamin B. Kennedy. A state-dependent delay equation with negative feedback and "mildly unstable" rapidly oscillating periodic solutions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1633-1650. doi: 10.3934/dcdsb.2013.18.1633

[8]

Jan Sieber. Finding periodic orbits in state-dependent delay differential equations as roots of algebraic equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2607-2651. doi: 10.3934/dcds.2012.32.2607

[9]

Xiang Li, Zhixiang Li. Kernel sections and (almost) periodic solutions of a non-autonomous parabolic PDE with a discrete state-dependent delay. Communications on Pure & Applied Analysis, 2011, 10 (2) : 687-700. doi: 10.3934/cpaa.2011.10.687

[10]

D. P. Demuner, M. Federson, C. Gutierrez. The Poincaré-Bendixson Theorem on the Klein bottle for continuous vector fields. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 495-509. doi: 10.3934/dcds.2009.25.495

[11]

Qingwen Hu. A model of regulatory dynamics with threshold-type state-dependent delay. Mathematical Biosciences & Engineering, 2018, 15 (4) : 863-882. doi: 10.3934/mbe.2018039

[12]

Tibor Krisztin. A local unstable manifold for differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 993-1028. doi: 10.3934/dcds.2003.9.993

[13]

Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445

[14]

Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167

[15]

A. R. Humphries, O. A. DeMasi, F. M. G. Magpantay, F. Upham. Dynamics of a delay differential equation with multiple state-dependent delays. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2701-2727. doi: 10.3934/dcds.2012.32.2701

[16]

Hermann Brunner, Stefano Maset. Time transformations for state-dependent delay differential equations. Communications on Pure & Applied Analysis, 2010, 9 (1) : 23-45. doi: 10.3934/cpaa.2010.9.23

[17]

Matthias Büger, Marcus R.W. Martin. Stabilizing control for an unbounded state-dependent delay equation. Conference Publications, 2001, 2001 (Special) : 56-65. doi: 10.3934/proc.2001.2001.56

[18]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[19]

Qingwen Hu, Huan Zhang. Stabilization of turning processes using spindle feedback with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4329-4360. doi: 10.3934/dcdsb.2018167

[20]

Igor Chueshov, Peter E. Kloeden, Meihua Yang. Long term dynamics of second order-in-time stochastic evolution equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 991-1009. doi: 10.3934/dcdsb.2018139

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (11)
  • HTML views (344)
  • Cited by (0)

Other articles
by authors

[Back to Top]