• Previous Article
    Generalised Lyapunov-Razumikhin techniques for scalar state-dependent delay differential equations
  • DCDS-S Home
  • This Issue
  • Next Article
    A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback
January  2020, 13(1): 67-84. doi: 10.3934/dcdss.2020004

Existence of strictly decreasing positive solutions of linear differential equations of neutral type

CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic

* Corresponding author: Josef Diblík

Received  December 2016 Revised  April 2017 Published  January 2019

The paper is concerned with a linear neutral differential equation
$ \dot y(t) = -c(t)y(t-\tau(t))+d(t)\dot y(t-\delta(t)) $
where
$ c\colon [t_0,\infty)\to (0,\infty) $
,
$ d\colon [t_0,\infty)\to [0,\infty) $
,
$ t_0\in {\Bbb{R}} $
and
$ \tau, \delta \colon [t_0,\infty)\to (0,r] $
,
$ r\in{\mathbb{R}} $
,
$ r>0 $
are continuous functions. A new criterion is given for the existence of positive strictly decreasing solutions. The proof is based on the Rybakowski variant of a topological Ważewski principle suitable for differential equations of the delayed type. Unlike in the previous investigations known, this time the progress is achieved by using a special system of initial functions satisfying a so-called sewing condition. The result obtained is extended to more general equations. Comparisons with known results are given as well.
Citation: Josef Diblík, Zdeněk Svoboda. Existence of strictly decreasing positive solutions of linear differential equations of neutral type. Discrete & Continuous Dynamical Systems - S, 2020, 13 (1) : 67-84. doi: 10.3934/dcdss.2020004
References:
[1] R. P. AgarwalL. BerezanskiE. Braverman and A. Domoshnitsky, Nonoscillation Theory of Functional Differential Equations with Applications, Springer, New York, 2012.  doi: 10.1007/978-1-4614-3455-9.  Google Scholar
[2]

R. P. Agarwal, M. Bohner and W.-T. Li, Nonoscillation and Oscillation: Theory for Functional Differential Equations, Marcel Dekker, Inc., 2004. doi: 10.1201/9780203025741.  Google Scholar

[3]

D. D. Bainov and D. P. Mishev, Oscillation Theory for Neutral Differential Equations with Delay, Adam Hilger, 1991.  Google Scholar

[4]

J. Baštinec, J. Diblík and Z. Šmarda, An explicit criterion for the existence of positive solutions of the linear delayed equation $ \dot x(t) = -c(t)x(t-\tau(t) $, Abstr. Appl. Anal., 2011 (2011), Article ID 561902, 12 pages. doi: 10.1155/2011/561902.  Google Scholar

[5]

J. Baštinec, L. Berezansky, J. Diblík and Z. Šmarda, On the critical case in oscillation for differential equations with a single delay and with several delays, Abstr. Appl. Anal., 2010 (2010), Article ID 417869, 20 pages. doi: 10.1155/2010/417869.  Google Scholar

[6]

L. Berezanski and E. Braverman, On oscillation of a logistic equation with several delays, J. Comput. and Appl. Mathem., 113 (2000), 255-265.  doi: 10.1016/S0377-0427(99)00260-5.  Google Scholar

[7]

L. BerezanskiJ. Diblík and Z. Šmarda, Positive solutions of a second-order delay differential equations with a damping term, Comput. Math. Appl., 60 (2010), 1332-1342.  doi: 10.1016/j.camwa.2010.06.014.  Google Scholar

[8]

J. Čermák, A change of variables in the asymptotic theory of differential equations with unbounded delay, J. Comput. Appl. Mathem., 143 (2002), 81-93.  doi: 10.1016/S0377-0427(01)00500-3.  Google Scholar

[9]

J. Diblík, A criterion for existence of positive solutions of systems of retarded functional differential equations, Nonl. Anal., TMA, 38 (1999), 327-339.  doi: 10.1016/S0362-546X(98)00199-0.  Google Scholar

[10]

J. Diblík, Existence of solutions with asymptotic behavior of a certain type of some systems of delay functional-differential equations, (Russian) Sibirsk. Mat. Zh., 32 (1991), 55-60; translation in Siberian Math. J., 32 (1991), 222-226. doi: 10.1007/BF00972768.  Google Scholar

[11]

J. Diblík, Positive and oscillating solutions of differential equations with delay in critical case, J. Comput. Appl. Mathem., 88 (1998), 185-202.  doi: 10.1016/S0377-0427(97)00217-3.  Google Scholar

[12]

J. Diblík and N. Koksch, Positive solutions of the equation $ \dot x(t) = -c(t)x(t-\tau) $ in the critical case, J. Math. Anal. Appl., 250 (2000), 635-659.  doi: 10.1006/jmaa.2000.7008.  Google Scholar

[13]

J. Diblík and M. Kúdelčíková, Existence and asymptotic behavior of positive solutions of functional differential equations of delayed type, Abstr. Appl. Anal., 2011 (2011), Article ID 754701, 16 pages. doi: 10.1155/2011/754701.  Google Scholar

[14]

J. Diblík and M. Kúdelčíková, Two classes of asymptotically different positive solutions of the equation $ \dot y(t) = -f(t,y(t)) $, Nonlinear Anal., 70 (2009), 3702-3714.  doi: 10.1016/j.na.2008.07.026.  Google Scholar

[15]

J. Diblík and M. Kúdelčíková, Two classes of positive solutions of first order functional differential equations of delayed type, Nonlinear Anal., 75 (2012), 4807-4820.  doi: 10.1016/j.na.2012.03.030.  Google Scholar

[16]

J. Diblík and Z. Svoboda, An existence criterion of positive solutions of $p$-type retarded functional differential equations, J. Comput. Appl. Math., 147 (2002), 315-331.  doi: 10.1016/S0377-0427(02)00439-9.  Google Scholar

[17]

J. DiblíkZ. Svoboda and Z. Šmarda, Explicit criteria for the existence of positive solutions for a scalar differential equation with variable delay in the critical case, Comput. Math. Appl., 56 (2008), 556-564.  doi: 10.1016/j.camwa.2008.01.015.  Google Scholar

[18]

J. DiblíkZ. Svoboda and Z. Šmarda, Retract principle for neutral functional differential equations, Nonlinear Anal., 71 (2009), e1393-e1400.  doi: 10.1016/j.na.2009.01.164.  Google Scholar

[19]

Y. Domshlak and I. P. Stavroulakis, Oscillation of first-order delay differential equations in a critical state, Appl. Anal., 61 (1996), 359-371.  doi: 10.1080/00036819608840464.  Google Scholar

[20]

A. Domoshnitsky and M. Drakhlin, Nonoscillation of first order differential equations with delay, J. Math. Anal. Appl., 206 (1997), 254-269.  doi: 10.1006/jmaa.1997.5231.  Google Scholar

[21]

B. Dorociaková and R. Olach, Existence of positive solutions of delay differential equations, Tatra Mt. Math. Publ., 43 (2009), 63-70.  doi: 10.2478/v10127-009-0025-6.  Google Scholar

[22]

Á. Elbert and I. P. Stavroulakis, Oscillation and non-oscillation criteria for delay differential equations, Proc. Amer. Math. Soc., 123 (1995), 1503-1510.  doi: 10.1090/S0002-9939-1995-1242082-1.  Google Scholar

[23] L. H. ErbeQ. Kong and B. G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 1995.   Google Scholar
[24] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, 1992.  doi: 10.1007/978-94-015-7920-9.  Google Scholar
[25] I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations, Clarendon Press, Oxford, 1991.   Google Scholar
[26] J. K. Hale and Sjoerd M. Verdun Lunel, Introduction to Functional Differential Equations, Springer-Verlag, 1993.  doi: 10.1007/978-1-4612-4342-7.  Google Scholar
[27]

P. Hartman, Ordinary Differential Equations, Second Edition, SIAM, 2002. doi: 10.1137/1.9780898719222.  Google Scholar

[28]

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999. doi: 10.1007/978-94-017-1965-0.  Google Scholar

[29]

R. G. Koplatadze and T. A. Chanturia, Oscillating and monotone solutions of first-order differential equations with deviating argument, Differentsialnyje Uravnenija, 18 (1982), 1463-1465.   Google Scholar

[30]

B. S. Razumikhin, A method of studying the stability of systems with an aftereffect, Sov. Math., Dokl., 7 (1966), 559-562, translation from Dokl. Akad. Nauk SSSR, 167 (1966), 1234-1237.  Google Scholar

[31]

B. S. Razumikhin, Stability of Hereditary Systems, Nauka, 1988, (Russian, Ustoichivost ereditarnykh sistem).  Google Scholar

[32]

B. S. Razumikhin, The application of Lyapunov’s method to problems in the stability of systems with delay, Autom. Remote Control, 21 (1960), 515-520, translation from Avtom. Telemekh., 21 (1960), 740-748.  Google Scholar

[33]

K. P. Rybakowski, A topological principle for retarded functional differential equations of Carathéodory type, J. Diff. Equat., 39 (1981), 131-150.  doi: 10.1016/0022-0396(81)90070-X.  Google Scholar

[34]

K. P. Rybakowski, Ważewski's principle for retarded functional differential equations, J. Diff. Equat., 36 (1980), 117-138.  doi: 10.1016/0022-0396(80)90080-7.  Google Scholar

[35]

V. E. Sljusarchuk, The necessary and sufficient conditions for oscillation of solutions of nonlinear differential equations with pulse influence in the Banach space, Ukrain. Mat. Zh., 51 (1999), 98-109.  doi: 10.1007/BF02591918.  Google Scholar

[36]

R. Srzednicki, Ważewski Method and Conley Index, Handbook of Differential Equations, Ordinary Differential Equations, Edited by A. Cañada, P. Drábek and A. Fonda, Elsevier Inc., 1 (2004), 591-684.  Google Scholar

[37]

I. P. Stavroulakis, Oscillation criteria for first order delay difference equations, Mediterr. J. Math., 1 (2004), 231-240.  doi: 10.1007/s00009-004-0013-7.  Google Scholar

[38]

T. Ważewski, Sur un principle topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles, Ann. Soc. Polon. Math., 20 (1947), 279-313.   Google Scholar

[39]

D. Zhou, On a problem of I. Györi, J. Math. Anal. Appl., 183 (1994), 620-623.  doi: 10.1006/jmaa.1994.1168.  Google Scholar

show all references

References:
[1] R. P. AgarwalL. BerezanskiE. Braverman and A. Domoshnitsky, Nonoscillation Theory of Functional Differential Equations with Applications, Springer, New York, 2012.  doi: 10.1007/978-1-4614-3455-9.  Google Scholar
[2]

R. P. Agarwal, M. Bohner and W.-T. Li, Nonoscillation and Oscillation: Theory for Functional Differential Equations, Marcel Dekker, Inc., 2004. doi: 10.1201/9780203025741.  Google Scholar

[3]

D. D. Bainov and D. P. Mishev, Oscillation Theory for Neutral Differential Equations with Delay, Adam Hilger, 1991.  Google Scholar

[4]

J. Baštinec, J. Diblík and Z. Šmarda, An explicit criterion for the existence of positive solutions of the linear delayed equation $ \dot x(t) = -c(t)x(t-\tau(t) $, Abstr. Appl. Anal., 2011 (2011), Article ID 561902, 12 pages. doi: 10.1155/2011/561902.  Google Scholar

[5]

J. Baštinec, L. Berezansky, J. Diblík and Z. Šmarda, On the critical case in oscillation for differential equations with a single delay and with several delays, Abstr. Appl. Anal., 2010 (2010), Article ID 417869, 20 pages. doi: 10.1155/2010/417869.  Google Scholar

[6]

L. Berezanski and E. Braverman, On oscillation of a logistic equation with several delays, J. Comput. and Appl. Mathem., 113 (2000), 255-265.  doi: 10.1016/S0377-0427(99)00260-5.  Google Scholar

[7]

L. BerezanskiJ. Diblík and Z. Šmarda, Positive solutions of a second-order delay differential equations with a damping term, Comput. Math. Appl., 60 (2010), 1332-1342.  doi: 10.1016/j.camwa.2010.06.014.  Google Scholar

[8]

J. Čermák, A change of variables in the asymptotic theory of differential equations with unbounded delay, J. Comput. Appl. Mathem., 143 (2002), 81-93.  doi: 10.1016/S0377-0427(01)00500-3.  Google Scholar

[9]

J. Diblík, A criterion for existence of positive solutions of systems of retarded functional differential equations, Nonl. Anal., TMA, 38 (1999), 327-339.  doi: 10.1016/S0362-546X(98)00199-0.  Google Scholar

[10]

J. Diblík, Existence of solutions with asymptotic behavior of a certain type of some systems of delay functional-differential equations, (Russian) Sibirsk. Mat. Zh., 32 (1991), 55-60; translation in Siberian Math. J., 32 (1991), 222-226. doi: 10.1007/BF00972768.  Google Scholar

[11]

J. Diblík, Positive and oscillating solutions of differential equations with delay in critical case, J. Comput. Appl. Mathem., 88 (1998), 185-202.  doi: 10.1016/S0377-0427(97)00217-3.  Google Scholar

[12]

J. Diblík and N. Koksch, Positive solutions of the equation $ \dot x(t) = -c(t)x(t-\tau) $ in the critical case, J. Math. Anal. Appl., 250 (2000), 635-659.  doi: 10.1006/jmaa.2000.7008.  Google Scholar

[13]

J. Diblík and M. Kúdelčíková, Existence and asymptotic behavior of positive solutions of functional differential equations of delayed type, Abstr. Appl. Anal., 2011 (2011), Article ID 754701, 16 pages. doi: 10.1155/2011/754701.  Google Scholar

[14]

J. Diblík and M. Kúdelčíková, Two classes of asymptotically different positive solutions of the equation $ \dot y(t) = -f(t,y(t)) $, Nonlinear Anal., 70 (2009), 3702-3714.  doi: 10.1016/j.na.2008.07.026.  Google Scholar

[15]

J. Diblík and M. Kúdelčíková, Two classes of positive solutions of first order functional differential equations of delayed type, Nonlinear Anal., 75 (2012), 4807-4820.  doi: 10.1016/j.na.2012.03.030.  Google Scholar

[16]

J. Diblík and Z. Svoboda, An existence criterion of positive solutions of $p$-type retarded functional differential equations, J. Comput. Appl. Math., 147 (2002), 315-331.  doi: 10.1016/S0377-0427(02)00439-9.  Google Scholar

[17]

J. DiblíkZ. Svoboda and Z. Šmarda, Explicit criteria for the existence of positive solutions for a scalar differential equation with variable delay in the critical case, Comput. Math. Appl., 56 (2008), 556-564.  doi: 10.1016/j.camwa.2008.01.015.  Google Scholar

[18]

J. DiblíkZ. Svoboda and Z. Šmarda, Retract principle for neutral functional differential equations, Nonlinear Anal., 71 (2009), e1393-e1400.  doi: 10.1016/j.na.2009.01.164.  Google Scholar

[19]

Y. Domshlak and I. P. Stavroulakis, Oscillation of first-order delay differential equations in a critical state, Appl. Anal., 61 (1996), 359-371.  doi: 10.1080/00036819608840464.  Google Scholar

[20]

A. Domoshnitsky and M. Drakhlin, Nonoscillation of first order differential equations with delay, J. Math. Anal. Appl., 206 (1997), 254-269.  doi: 10.1006/jmaa.1997.5231.  Google Scholar

[21]

B. Dorociaková and R. Olach, Existence of positive solutions of delay differential equations, Tatra Mt. Math. Publ., 43 (2009), 63-70.  doi: 10.2478/v10127-009-0025-6.  Google Scholar

[22]

Á. Elbert and I. P. Stavroulakis, Oscillation and non-oscillation criteria for delay differential equations, Proc. Amer. Math. Soc., 123 (1995), 1503-1510.  doi: 10.1090/S0002-9939-1995-1242082-1.  Google Scholar

[23] L. H. ErbeQ. Kong and B. G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 1995.   Google Scholar
[24] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, 1992.  doi: 10.1007/978-94-015-7920-9.  Google Scholar
[25] I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations, Clarendon Press, Oxford, 1991.   Google Scholar
[26] J. K. Hale and Sjoerd M. Verdun Lunel, Introduction to Functional Differential Equations, Springer-Verlag, 1993.  doi: 10.1007/978-1-4612-4342-7.  Google Scholar
[27]

P. Hartman, Ordinary Differential Equations, Second Edition, SIAM, 2002. doi: 10.1137/1.9780898719222.  Google Scholar

[28]

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999. doi: 10.1007/978-94-017-1965-0.  Google Scholar

[29]

R. G. Koplatadze and T. A. Chanturia, Oscillating and monotone solutions of first-order differential equations with deviating argument, Differentsialnyje Uravnenija, 18 (1982), 1463-1465.   Google Scholar

[30]

B. S. Razumikhin, A method of studying the stability of systems with an aftereffect, Sov. Math., Dokl., 7 (1966), 559-562, translation from Dokl. Akad. Nauk SSSR, 167 (1966), 1234-1237.  Google Scholar

[31]

B. S. Razumikhin, Stability of Hereditary Systems, Nauka, 1988, (Russian, Ustoichivost ereditarnykh sistem).  Google Scholar

[32]

B. S. Razumikhin, The application of Lyapunov’s method to problems in the stability of systems with delay, Autom. Remote Control, 21 (1960), 515-520, translation from Avtom. Telemekh., 21 (1960), 740-748.  Google Scholar

[33]

K. P. Rybakowski, A topological principle for retarded functional differential equations of Carathéodory type, J. Diff. Equat., 39 (1981), 131-150.  doi: 10.1016/0022-0396(81)90070-X.  Google Scholar

[34]

K. P. Rybakowski, Ważewski's principle for retarded functional differential equations, J. Diff. Equat., 36 (1980), 117-138.  doi: 10.1016/0022-0396(80)90080-7.  Google Scholar

[35]

V. E. Sljusarchuk, The necessary and sufficient conditions for oscillation of solutions of nonlinear differential equations with pulse influence in the Banach space, Ukrain. Mat. Zh., 51 (1999), 98-109.  doi: 10.1007/BF02591918.  Google Scholar

[36]

R. Srzednicki, Ważewski Method and Conley Index, Handbook of Differential Equations, Ordinary Differential Equations, Edited by A. Cañada, P. Drábek and A. Fonda, Elsevier Inc., 1 (2004), 591-684.  Google Scholar

[37]

I. P. Stavroulakis, Oscillation criteria for first order delay difference equations, Mediterr. J. Math., 1 (2004), 231-240.  doi: 10.1007/s00009-004-0013-7.  Google Scholar

[38]

T. Ważewski, Sur un principle topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles, Ann. Soc. Polon. Math., 20 (1947), 279-313.   Google Scholar

[39]

D. Zhou, On a problem of I. Györi, J. Math. Anal. Appl., 183 (1994), 620-623.  doi: 10.1006/jmaa.1994.1168.  Google Scholar

[1]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[2]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[3]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[4]

Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021006

[5]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[6]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[7]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[8]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[9]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[10]

Sergei Avdonin, Yuanyuan Zhao. Leaf Peeling method for the wave equation on metric tree graphs. Inverse Problems & Imaging, 2021, 15 (2) : 185-199. doi: 10.3934/ipi.2020060

[11]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021019

[12]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[13]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[14]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[15]

Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233

[16]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[17]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[18]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[19]

Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153

[20]

Sibel Senan, Eylem Yucel, Zeynep Orman, Ruya Samli, Sabri Arik. A Novel Lyapunov functional with application to stability analysis of neutral systems with nonlinear disturbances. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1415-1428. doi: 10.3934/dcdss.2020358

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (181)
  • HTML views (686)
  • Cited by (0)

Other articles
by authors

[Back to Top]