# American Institute of Mathematical Sciences

• Previous Article
Models of fluid flowing in non-conventional media: New numerical analysis
• DCDS-S Home
• This Issue
• Next Article
A new numerical scheme applied on re-visited nonlinear model of predator-prey based on derivative with non-local and non-singular kernel
March  2020, 13(3): 443-466. doi: 10.3934/dcdss.2020025

## Augmented upwind numerical schemes for a fractional advection-dispersion equation in fractured groundwater systems

 Institute for Groundwater Studies, Faculty of Agricultural and Natural Sciences, University of the Free State, 9301, Bloemfontein, Free State, South Africa

* Corresponding author: A. Allwright

Received  June 2018 Revised  July 2018 Published  March 2019

The anomalous transport of particles within non-linear systems cannot be captured accurately with the classical advection-dispersion equation, due to its inability to incorporate non-linearity of geological formations in the mathematical formulation. Fortunately, fractional differential operators have been recognised as appropriate mathematical tools to describe such natural phenomena. The classical advection-dispersion equation is adapted to a fractional model by replacing the time differential operator by a time fractional derivative to include the power-law waiting time distribution. The advection component is adapted by replacing the local differential by a fractional space derivative to account for mean-square displacement from normal to super-advection. Due to the complexity of this new model, new numerical schemes are suggested, including an upwind Crank-Nicholson and weighted upwind-downwind scheme. Both numerical schemes are used to solve the modified fractional advection-dispersion model and the conditions of their stability established.

Citation: Amy Allwright, Abdon Atangana. Augmented upwind numerical schemes for a fractional advection-dispersion equation in fractured groundwater systems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 443-466. doi: 10.3934/dcdss.2020025
##### References:

show all references

##### References:
Summary of the established stability condition, and corresponding assumption, for each numerical approximation scheme
 Scheme Assumptions Stability condition Upwind (explicit) $\frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha }+v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } > \frac{2D_{L}}{ \left( \Delta x \right) ^{2}}$ Unstable $\frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha }+v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } <\frac{2D_{L}}{ \left( \Delta x \right) ^{2}}$ Conditionally stable $\frac{4D_{L}}{ \left( \Delta x \right) ^{2}} +v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \left( 2-2cos \phi \right) \beta _{m}+\frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{n} <\frac{2 \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) }$ Upwind (implicit) $\frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha }+v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha }>\frac{2D_{L}}{ \left( \Delta x \right) ^{2}}$ Unconditionally stable / Conditionally stable $\frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{n} v\frac{0.5 \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } +\frac{2D_{L}}{ \left( \Delta x \right) ^{2}}$ Unconditionally stable / Conditionally stable $\frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{n} \frac{2D_{L}}{ \left( \Delta x \right) ^{2}}$ Unstable $\frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha } + v \left( 2 \theta -1 \right) \frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } <\frac{2D_{L}}{ \left( \Delta x \right) ^{2}}$ Conditionally stable / Unstable Weighted upwinddownwind (implicit) $\frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha } +v \left( 2 \theta -1 \right) \frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha }>\frac{2D_{L}}{ \left( \Delta x \right) ^{2}}$ Unconditionally stable / conditionally stable $\frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{n}  Scheme Assumptions Stability condition Upwind (explicit)$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha }+v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } > \frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $Unstable$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha }+v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } <\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $Conditionally stable$ \frac{4D_{L}}{ \left( \Delta x \right) ^{2}} +v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \left( 2-2cos \phi \right) \beta _{m}+\frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{n} <\frac{2 \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } $Upwind (implicit)$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha }+v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha }>\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $Unconditionally stable / Conditionally stable$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{n} v\frac{0.5 \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } +\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $Unconditionally stable / Conditionally stable$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{n} \frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $Unstable$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha } + v \left( 2 \theta -1 \right) \frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } <\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $Conditionally stable / Unstable Weighted upwinddownwind (implicit)$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha } +v \left( 2 \theta -1 \right) \frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha }>\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $Unconditionally stable / conditionally stable$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{n}
 [1] Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020402 [2] Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic & Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019 [3] Qing Tang. On an optimal control problem of time-fractional advection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 761-779. doi: 10.3934/dcdsb.2019266 [4] Yuanwei Qi. Anomalous exponents and RG for nonlinear diffusion equations. Conference Publications, 2005, 2005 (Special) : 738-745. doi: 10.3934/proc.2005.2005.738 [5] Stephen Thompson, Thomas I. Seidman. Approximation of a semigroup model of anomalous diffusion in a bounded set. Evolution Equations & Control Theory, 2013, 2 (1) : 173-192. doi: 10.3934/eect.2013.2.173 [6] Wei Qu, Siu-Long Lei, Seak-Weng Vong. A note on the stability of a second order finite difference scheme for space fractional diffusion equations. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 317-325. doi: 10.3934/naco.2014.4.317 [7] Shota Sato, Eiji Yanagida. Appearance of anomalous singularities in a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2012, 11 (1) : 387-405. doi: 10.3934/cpaa.2012.11.387 [8] Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223 [9] Dinh-Ke Tran, Tran-Phuong-Thuy Lam. Nonlocal final value problem governed by semilinear anomalous diffusion equations. Evolution Equations & Control Theory, 2020, 9 (3) : 891-914. doi: 10.3934/eect.2020038 [10] Alexandre Caboussat, Roland Glowinski. A Numerical Method for a Non-Smooth Advection-Diffusion Problem Arising in Sand Mechanics. Communications on Pure & Applied Analysis, 2009, 8 (1) : 161-178. doi: 10.3934/cpaa.2009.8.161 [11] Ronald E. Mickens. A nonstandard finite difference scheme for the drift-diffusion system. Conference Publications, 2009, 2009 (Special) : 558-563. doi: 10.3934/proc.2009.2009.558 [12] Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007 [13] Patrick Henning, Mario Ohlberger. The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks & Heterogeneous Media, 2010, 5 (4) : 711-744. doi: 10.3934/nhm.2010.5.711 [14] Yohan Penel. An explicit stable numerical scheme for the $1D$ transport equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 641-656. doi: 10.3934/dcdss.2012.5.641 [15] Assyr Abdulle. Multiscale methods for advection-diffusion problems. Conference Publications, 2005, 2005 (Special) : 11-21. doi: 10.3934/proc.2005.2005.11 [16] Lena-Susanne Hartmann, Ilya Pavlyukevich. Advection-diffusion equation on a half-line with boundary Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 637-655. doi: 10.3934/dcdsb.2018200 [17] J.R. Stirling. Chaotic advection, transport and patchiness in clouds of pollution in an estuarine flow. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 263-284. doi: 10.3934/dcdsb.2003.3.263 [18] Catherine Choquet, Marie-Christine Néel. From particles scale to anomalous or classical convection-diffusion models with path integrals. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 207-238. doi: 10.3934/dcdss.2014.7.207 [19] M. B. A. Mansour. Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 83-91. doi: 10.3934/mbe.2009.6.83 [20] Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020197

2019 Impact Factor: 1.233