# American Institute of Mathematical Sciences

• Previous Article
A novel predictor-corrector scheme for solving variable-order fractional delay differential equations involving operators with Mittag-Leffler kernel
• DCDS-S Home
• This Issue
• Next Article
Analysis of a Lymphatic filariasis-schistosomiasis coinfection with public health dynamics: Model obtained through Mittag-Leffler function
March  2020, 13(3): 539-560. doi: 10.3934/dcdss.2020030

## Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions

 1 Department of Mathematics, Baba Farid College, Bathinda-151001, India 2 Post Graduate Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar-388120, India 3 Department of Mathematics Education, University of Education, Winneba(Kumasi campus), Ghana 4 Department of Applied Sciences, Guru Kashi University, Bathinda-1513002, India

* Corresponding author: Jyotindra C. Prajapati

Received  July 2018 Revised  September 2018 Published  March 2019

The aim of the present paper is to establish certain new image formulae of family of some extended generalized Gauss hypergeometric functions by applying the operators of fractional derivative involving ${}_2F_1(.)$ due to Saigo. Furthermore, by employing some integral transforms on the resulting formulas, we obtained some more image formulas and also develop a new and further generalized form of the fractional kinetic equation involving the family of some extended generalized Gauss hypergeometric functions and the manifold generality of the family of functions is discussed in terms of the solution of the fractional kinetic equation. The results obtained here are quite general in nature.

Citation: Mehar Chand, Jyotindra C. Prajapati, Ebenezer Bonyah, Jatinder Kumar Bansal. Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 539-560. doi: 10.3934/dcdss.2020030
##### References:
 [1] P. Agarwal, M. Chand and G. Singh, Certain fractional kinetic equations involving the product of generalized k-Bessel function, Alexandria Engineering Journal, 55 (2016), 3053-3059.  doi: 10.1016/j.aej.2016.07.025.  Google Scholar [2] P. Agarwal, S. K. Ntouyas, S. Jain, M. Chand and G. Singh, Fractional kinetic equations involving generalized k-Bessel function via Sumudu transform, Alexandria Engineering Journal, 57 (2018), 1937-1942.  doi: 10.1016/j.aej.2017.03.046.  Google Scholar [3] M. A. Al-Bassam and Y. K. Luchko, On generalized fractional calculus and its application to the solution of integro-differential equations, J. Fract. Calc., 7 (1995), 69-88.   Google Scholar [4] A. Atangana and J. F. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (2018), 166.  doi: 10.1140/epjp/i2018-12021-3.  Google Scholar [5] A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A: Statistical Mechanics and its Applications, 505 (2018), 688-706.  doi: 10.1016/j.physa.2018.03.056.  Google Scholar [6] A. Atangana, Blind in a commutative world: Simple illustrations with functions and chaotic attractors, Chaos, Solitons and Fractals, 114 (2018), 347-363.  doi: 10.1016/j.chaos.2018.07.022.  Google Scholar [7] M. Axtell and M. E. Bise, Fractional Calculus Applications in Control Systems, In: Proceedings of the 1990 National Aerospace and Electronics Conference, Dayton, OH, USA, 1990. doi: 10.1109/NAECON.1990.112826.  Google Scholar [8] M. Caputo, Linear models of dissipation whose $q$ is almost frequency independent Ⅱ, Geophys. J. Royal Astr. Soc., 13 (1967), 529-539.  doi: 10.1111/j.1365-246X.1967.tb02303.x.  Google Scholar [9] M. A. Chaudhry, A. Qadir, M. Rafique and S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Math., 78 (1997), 19-32.  doi: 10.1016/S0377-0427(96)00102-1.  Google Scholar [10] M. A. Chaudhry, A. Qadir, H. M. Srivastava and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., 159 (2004), 589-602.  doi: 10.1016/j.amc.2003.09.017.  Google Scholar [11] V. B. L. Chaurasia and S. C. Pandey, On the new computable solution of the generalized fractional kinetic equations involving the generalized function for the fractional calculus and related functions, Astrophys. Space Sci., 317 (2008), 213-219.   Google Scholar [12] Y. Chen, I. Petráš and D. Xue, Fractional Order Control, A Tutorial Proceedings of 2009 American Control Conference, St. Louis, MO, USA, 2009. Google Scholar [13] J. Choi, P. Agarwal, S. Mathur and S. D. Purohit, Certain new integral formulas involving the generalized Bessel function, Bull.Korean Math. Soc., 51 (2014), 995–1003. Available from: http://dx.doi.org/10.5831/HMJ.2013.35.4.667 doi: 10.4134/BKMS.2014.51.4.995.  Google Scholar [14] J. Choi and P. Agarwal, A note on fractional integral operator associated with multiindex Mittag-Leffler functions, Filomat, 30 (2016), 1931–1939. Available from: https://www.jstor.org/stable/24898765 doi: 10.2298/FIL1607931C.  Google Scholar [15] A. Chouhan and S. Sarswat, On solution of generalized kinetic equation of fractional order, Int. J. Math. Sci. Appl., 2 (2012), 813-818.   Google Scholar [16] A. Chouhan, S. D. Purohit and S. Saraswat, An alternative method for solving generalized differential equations of fractional order, Kragujevac J. Math., 37 (2013), 299-306.   Google Scholar [17] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, In: Tables of integral transforms, McGraw-Hill, New York-Toronto-London, 1 (1954). Google Scholar [18] A. C. Escamilla, J. F. Gómez-Aguilar, D. Baleanu, T. Córdova-Fraga, R. F. Escobar-Jiménez, V. H. Olivares-Peregrino, M. M. A. Qurashi, Bateman-feshbach tikochinsky and caldirolakanai oscillators with new fractional differentiation, Entropy, 19 (2017), 1–13. Available from: https://doi.org/10.3390/e19020055 Google Scholar [19] A. C. Escamilla, F. Torres, J. F. Gómez-Aguilar, R. F. Escobar-Jiménez and G. V. Guerrero-Ramírez, On the trajectory tracking control for an scara robot manipulator in a fractional model driven by induction motors with pso tuning, Multibody Syst Dyn., 43 (2018), 257-277.  doi: 10.1007/s11044-017-9586-3.  Google Scholar [20] A. C. Escamilla, J. F. Gómez-Aguilar, L. Torres and R. F. Escobar-Jiménez, A numerical solution for a variable-order reaction diffusion model by using fractional derivatives with non-local and non-singular kernel, Physica A, 491 (2018), 406-424.  doi: 10.1016/j.physa.2017.09.014.  Google Scholar [21] J. F. Gómez-Aguilar, Novel analytical solutions of the fractional Drude model, Optik, 168 (2018), 728–740. Available from: https://doi.org/10.1016/j.ijleo.2018.04.107 Google Scholar [22] J. F. Gómez-Aguilar, H. Yépez-Martnez, R. F. Escobar-Jiménez, C. M. Astorga-Zaragozaand and J. Reyes-Reyes, Analytical and numerical solutions of electrical circuits described by fractional derivatives. Applied Mathematical Modelling, Applied Mathematical Modelling, 40 (2016), 9079-9094.  doi: 10.1016/j.apm.2016.05.041.  Google Scholar [23] J. F. Gómez-Aguilar, Chaos in a nonlinear bloch system with atangana abaleanu fractional derivatives, Numer. Methods Partial Differential Eq., 34 (2018), 1716-1738.  doi: 10.1002/num.22219.  Google Scholar [24] J. F. Gómez-Aguilar, H. Yépez-Martínez, J. Torres-Jiménez, T. Córdova-Fraga, R. F. Escobar-Jiménez and V. H. Olivares-Peregrino, Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Advances in Difference Equations, 68 (2017), 1-18.  doi: 10.1186/s13662-017-1120-7.  Google Scholar [25] V. G. Gupta, B. Sharma and F. B. M. Belgacem, On the solutions of generalized fractional kinetic equations, Appl. Math. Sci., 5 (2011), 899-910.   Google Scholar [26] A. Gupta and C. L. Parihar, On solutions of generalized kinetic equations of fractional order, Bol. Soc. Paran. Mat., 32 (2014), 183-191.  doi: 10.5269/bspm.v32i1.18146.  Google Scholar [27] R. E. Gutiérrez, J. M. Rosário and J. T. Machado, Fractional order calculus: Basic concepts and engineering applications, Mathematical Problems in Engineering, 2010 (2010), Article ID 375858, 19 pages. doi: 10.1155/2010/375858.  Google Scholar [28] S. E. Hamamci, Stabilization using fractional order pi and pid controllers, Nonlinear Dynamics, 51 (2008), 329-343.   Google Scholar [29] S. E. Hamamci and M. Koksal, Calculation of all stabilizing fractional-order pd controllers for integrating time delay systems, Computers and Mathematics with Applications, 59 (2010), 1621-1629.  doi: 10.1016/j.camwa.2009.08.049.  Google Scholar [30] H. J. Haubold and A. M. Mathai, The fractional kinetic equation and thermonuclear functions, Astrophys. Space Sci., 273 (2000), 53-63.   Google Scholar [31] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, The Netherlands, 204 (2006), 7-10.   Google Scholar [32] A. A. Kilbas and N. Sebastian, Generalized fractional integration of Bessel function of the first kind, Int. Transf. Spec. Funct., 19 (2008), 869-883.  doi: 10.1080/10652460802295978.  Google Scholar [33] H. Kober, On fractional integrals and derivatives, Quart. J. Math. Oxford Ser., 11 (1940), 193-212.  doi: 10.1093/qmath/os-11.1.193.  Google Scholar [34] D. Kumar, S. D. Purohit, A. Secer and A. Atangana, On generalized fractional kinetic equations involving generalized Bessel, Mathematical Problems in Engineering, 2015 (2015), Article ID 289387, 7 pages. doi: 10.1155/2015/289387.  Google Scholar [35] A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-Functions: Theory and Applications, Springer, New York, 2010. doi: 10.1007/978-1-4419-0916-9.  Google Scholar [36] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, USA, 1993.  Google Scholar [37] G. M. Mittag-Leffler, Sur la representation analytique d'une branche uniforme d'une fonction monogene, Acta. Math., 29 (1905), 101-181.  doi: 10.1007/BF02403200.  Google Scholar [38] K. B. Oldham and J. Spanier, The fractional Calculus: Theory and Applications of Differentiation and Integration of Arbitrary Order, Academic Press, New York, 1974.   Google Scholar [39] E. $\ddot{O}$zergin, M. A. $\ddot{O}$zarslan and A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math., 235 (2011), 4601-4610.  doi: 10.1016/j.cam.2010.04.019.  Google Scholar [40] E.$\ddot{O}$zergin, Some Properties of Hypergeometric Functions, Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, 2011. Available from: http://hdl.handle.net/11129/217 Google Scholar [41] R. K. Parmar, A new generalization of Gamma, Beta, hypergeometric and confluent hypergeometric functions, Matematiche (Catania), 68 (2013), 33-52.   Google Scholar [42] I. Petráš, Stability of fractional-order systems with rational orders, A survey, Fractional Calculus & Applied Analysis, 12 (2009), 269–298. Available from: https://arXiv.org/pdf/0811.4102  Google Scholar [43] I. Podlubny, Fractional Differential Equations, New York: Academic Press. San Diego, CA, USA, 1999.  Google Scholar [44] T. Pohlen, The Hadamard product and universal power series (Dissertation), Universit$\ddot {\rm {a}}$t Trier, (2009). Google Scholar [45] Y. N. Rabotnov, Creep Problems in Structural Members, North-Holland Series in Applied Mathematics and Mechanics, 1969. Google Scholar [46] E. D. Rainville, Special Functions, Macmillan Company, New York, Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.  Google Scholar [47] J. J. Rosales, M. Guía, F. Gmez, F. Aguilar and J. Martínez, Two dimensional fractional projectile motion in a resisting medium, Cent. Eur. J. Phys., 12 (2014), 517-520.  doi: 10.2478/s11534-014-0473-8.  Google Scholar [48] B. Ross, Fractional Calculus and Its Applications, proceedings of the international conference held at the University of New Haven, 1974.  Google Scholar [49] A. Saichev and M. Zaslavsky, Fractional kinetic equations: Solutions and applications, Chaos, 7 (1997), 753-764.  doi: 10.1063/1.166272.  Google Scholar [50] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, New York and London: Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar [51] R. K. Saxena, A. M. Mathai and H. J. Haubold, On fractional kinetic equations, Astrophys. Space Sci., 282 (2002), 281-287.   Google Scholar [52] R. K. Saxena, A. M. Mathai and H. J. Haubold, On generalized fractional kinetic equations, Physica A, 344 (2004), 657-664.  doi: 10.1016/j.physa.2004.06.048.  Google Scholar [53] R. K. Saxena, A. M. Mathai and H. J. Haubold, Solution of generalized fractional reaction-diffusion equations, Astrophys. Space Sci., 305 (2006), 305-313.  doi: 10.1007/s10509-006-9191-z.  Google Scholar [54] R. K. Saxena and S. L. Kalla, On the solutions of certain fractional kinetic equations, Appl. Math. Comput., 199 (2008), 504-511.  doi: 10.1016/j.amc.2007.10.005.  Google Scholar [55] G. Singh, P. Agarwal, M. Chand and S. Jain, Certain fractional kinetic equations involving generalized k-Bessel function, Transactions of A. Razmadze Mathematical Institute, 172 (2018), 559-570.  doi: 10.1016/j.trmi.2018.03.001.  Google Scholar [56] I. N. Sneddon, The Use of Integral Transforms, Tata McGraw-Hill, Delhi, 1979. Google Scholar [57] J. E. Solís-Pérez, J. F. Gómez-Aguilar and A. Atangana, Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws, Chaos, Solitons and Fractals, 114 (2018), 175-185.  doi: 10.1016/j.chaos.2018.06.032.  Google Scholar [58] M. R. Spiegel, Theory and Problems of Laplace Transforms, Schaums Outline Series, McGraw-Hill, New York, 1965.  Google Scholar [59] H. M. Srivastava, A. Cetinkaya and I. O. Kiymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput., 226 (2014), 484-491.  doi: 10.1016/j.amc.2013.10.032.  Google Scholar [60] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, Inc., Amsterdam, 2012. doi: 10.1016/B978-0-12-385218-2.00001-3.  Google Scholar [61] R. Srivastava and N. E. Cho, Some extended Pochhammer symbols and their applications involving generalized hypergeometric polynomials, Appl. Math. Comput., 234 (2014), 277-285.  doi: 10.1016/j.amc.2014.02.036.  Google Scholar [62] H. M. Srivastava and R. K. Saxena, Operators of fractional integration and their applications, Applied Mathematics and Computation, 118 (2001), 1-52.  doi: 10.1016/S0096-3003(99)00208-8.  Google Scholar [63] G. M. Zaslavsky, Fractional kinetic equation for Hamiltonian, Chaos. Physica D, 76 (1994), 110-122.  doi: 10.1016/0167-2789(94)90254-2.  Google Scholar

show all references

##### References:
 [1] P. Agarwal, M. Chand and G. Singh, Certain fractional kinetic equations involving the product of generalized k-Bessel function, Alexandria Engineering Journal, 55 (2016), 3053-3059.  doi: 10.1016/j.aej.2016.07.025.  Google Scholar [2] P. Agarwal, S. K. Ntouyas, S. Jain, M. Chand and G. Singh, Fractional kinetic equations involving generalized k-Bessel function via Sumudu transform, Alexandria Engineering Journal, 57 (2018), 1937-1942.  doi: 10.1016/j.aej.2017.03.046.  Google Scholar [3] M. A. Al-Bassam and Y. K. Luchko, On generalized fractional calculus and its application to the solution of integro-differential equations, J. Fract. Calc., 7 (1995), 69-88.   Google Scholar [4] A. Atangana and J. F. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (2018), 166.  doi: 10.1140/epjp/i2018-12021-3.  Google Scholar [5] A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A: Statistical Mechanics and its Applications, 505 (2018), 688-706.  doi: 10.1016/j.physa.2018.03.056.  Google Scholar [6] A. Atangana, Blind in a commutative world: Simple illustrations with functions and chaotic attractors, Chaos, Solitons and Fractals, 114 (2018), 347-363.  doi: 10.1016/j.chaos.2018.07.022.  Google Scholar [7] M. Axtell and M. E. Bise, Fractional Calculus Applications in Control Systems, In: Proceedings of the 1990 National Aerospace and Electronics Conference, Dayton, OH, USA, 1990. doi: 10.1109/NAECON.1990.112826.  Google Scholar [8] M. Caputo, Linear models of dissipation whose $q$ is almost frequency independent Ⅱ, Geophys. J. Royal Astr. Soc., 13 (1967), 529-539.  doi: 10.1111/j.1365-246X.1967.tb02303.x.  Google Scholar [9] M. A. Chaudhry, A. Qadir, M. Rafique and S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Math., 78 (1997), 19-32.  doi: 10.1016/S0377-0427(96)00102-1.  Google Scholar [10] M. A. Chaudhry, A. Qadir, H. M. Srivastava and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., 159 (2004), 589-602.  doi: 10.1016/j.amc.2003.09.017.  Google Scholar [11] V. B. L. Chaurasia and S. C. Pandey, On the new computable solution of the generalized fractional kinetic equations involving the generalized function for the fractional calculus and related functions, Astrophys. Space Sci., 317 (2008), 213-219.   Google Scholar [12] Y. Chen, I. Petráš and D. Xue, Fractional Order Control, A Tutorial Proceedings of 2009 American Control Conference, St. Louis, MO, USA, 2009. Google Scholar [13] J. Choi, P. Agarwal, S. Mathur and S. D. Purohit, Certain new integral formulas involving the generalized Bessel function, Bull.Korean Math. Soc., 51 (2014), 995–1003. Available from: http://dx.doi.org/10.5831/HMJ.2013.35.4.667 doi: 10.4134/BKMS.2014.51.4.995.  Google Scholar [14] J. Choi and P. Agarwal, A note on fractional integral operator associated with multiindex Mittag-Leffler functions, Filomat, 30 (2016), 1931–1939. Available from: https://www.jstor.org/stable/24898765 doi: 10.2298/FIL1607931C.  Google Scholar [15] A. Chouhan and S. Sarswat, On solution of generalized kinetic equation of fractional order, Int. J. Math. Sci. Appl., 2 (2012), 813-818.   Google Scholar [16] A. Chouhan, S. D. Purohit and S. Saraswat, An alternative method for solving generalized differential equations of fractional order, Kragujevac J. Math., 37 (2013), 299-306.   Google Scholar [17] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, In: Tables of integral transforms, McGraw-Hill, New York-Toronto-London, 1 (1954). Google Scholar [18] A. C. Escamilla, J. F. Gómez-Aguilar, D. Baleanu, T. Córdova-Fraga, R. F. Escobar-Jiménez, V. H. Olivares-Peregrino, M. M. A. Qurashi, Bateman-feshbach tikochinsky and caldirolakanai oscillators with new fractional differentiation, Entropy, 19 (2017), 1–13. Available from: https://doi.org/10.3390/e19020055 Google Scholar [19] A. C. Escamilla, F. Torres, J. F. Gómez-Aguilar, R. F. Escobar-Jiménez and G. V. Guerrero-Ramírez, On the trajectory tracking control for an scara robot manipulator in a fractional model driven by induction motors with pso tuning, Multibody Syst Dyn., 43 (2018), 257-277.  doi: 10.1007/s11044-017-9586-3.  Google Scholar [20] A. C. Escamilla, J. F. Gómez-Aguilar, L. Torres and R. F. Escobar-Jiménez, A numerical solution for a variable-order reaction diffusion model by using fractional derivatives with non-local and non-singular kernel, Physica A, 491 (2018), 406-424.  doi: 10.1016/j.physa.2017.09.014.  Google Scholar [21] J. F. Gómez-Aguilar, Novel analytical solutions of the fractional Drude model, Optik, 168 (2018), 728–740. Available from: https://doi.org/10.1016/j.ijleo.2018.04.107 Google Scholar [22] J. F. Gómez-Aguilar, H. Yépez-Martnez, R. F. Escobar-Jiménez, C. M. Astorga-Zaragozaand and J. Reyes-Reyes, Analytical and numerical solutions of electrical circuits described by fractional derivatives. Applied Mathematical Modelling, Applied Mathematical Modelling, 40 (2016), 9079-9094.  doi: 10.1016/j.apm.2016.05.041.  Google Scholar [23] J. F. Gómez-Aguilar, Chaos in a nonlinear bloch system with atangana abaleanu fractional derivatives, Numer. Methods Partial Differential Eq., 34 (2018), 1716-1738.  doi: 10.1002/num.22219.  Google Scholar [24] J. F. Gómez-Aguilar, H. Yépez-Martínez, J. Torres-Jiménez, T. Córdova-Fraga, R. F. Escobar-Jiménez and V. H. Olivares-Peregrino, Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Advances in Difference Equations, 68 (2017), 1-18.  doi: 10.1186/s13662-017-1120-7.  Google Scholar [25] V. G. Gupta, B. Sharma and F. B. M. Belgacem, On the solutions of generalized fractional kinetic equations, Appl. Math. Sci., 5 (2011), 899-910.   Google Scholar [26] A. Gupta and C. L. Parihar, On solutions of generalized kinetic equations of fractional order, Bol. Soc. Paran. Mat., 32 (2014), 183-191.  doi: 10.5269/bspm.v32i1.18146.  Google Scholar [27] R. E. Gutiérrez, J. M. Rosário and J. T. Machado, Fractional order calculus: Basic concepts and engineering applications, Mathematical Problems in Engineering, 2010 (2010), Article ID 375858, 19 pages. doi: 10.1155/2010/375858.  Google Scholar [28] S. E. Hamamci, Stabilization using fractional order pi and pid controllers, Nonlinear Dynamics, 51 (2008), 329-343.   Google Scholar [29] S. E. Hamamci and M. Koksal, Calculation of all stabilizing fractional-order pd controllers for integrating time delay systems, Computers and Mathematics with Applications, 59 (2010), 1621-1629.  doi: 10.1016/j.camwa.2009.08.049.  Google Scholar [30] H. J. Haubold and A. M. Mathai, The fractional kinetic equation and thermonuclear functions, Astrophys. Space Sci., 273 (2000), 53-63.   Google Scholar [31] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, The Netherlands, 204 (2006), 7-10.   Google Scholar [32] A. A. Kilbas and N. Sebastian, Generalized fractional integration of Bessel function of the first kind, Int. Transf. Spec. Funct., 19 (2008), 869-883.  doi: 10.1080/10652460802295978.  Google Scholar [33] H. Kober, On fractional integrals and derivatives, Quart. J. Math. Oxford Ser., 11 (1940), 193-212.  doi: 10.1093/qmath/os-11.1.193.  Google Scholar [34] D. Kumar, S. D. Purohit, A. Secer and A. Atangana, On generalized fractional kinetic equations involving generalized Bessel, Mathematical Problems in Engineering, 2015 (2015), Article ID 289387, 7 pages. doi: 10.1155/2015/289387.  Google Scholar [35] A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-Functions: Theory and Applications, Springer, New York, 2010. doi: 10.1007/978-1-4419-0916-9.  Google Scholar [36] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, USA, 1993.  Google Scholar [37] G. M. Mittag-Leffler, Sur la representation analytique d'une branche uniforme d'une fonction monogene, Acta. Math., 29 (1905), 101-181.  doi: 10.1007/BF02403200.  Google Scholar [38] K. B. Oldham and J. Spanier, The fractional Calculus: Theory and Applications of Differentiation and Integration of Arbitrary Order, Academic Press, New York, 1974.   Google Scholar [39] E. $\ddot{O}$zergin, M. A. $\ddot{O}$zarslan and A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math., 235 (2011), 4601-4610.  doi: 10.1016/j.cam.2010.04.019.  Google Scholar [40] E.$\ddot{O}$zergin, Some Properties of Hypergeometric Functions, Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, 2011. Available from: http://hdl.handle.net/11129/217 Google Scholar [41] R. K. Parmar, A new generalization of Gamma, Beta, hypergeometric and confluent hypergeometric functions, Matematiche (Catania), 68 (2013), 33-52.   Google Scholar [42] I. Petráš, Stability of fractional-order systems with rational orders, A survey, Fractional Calculus & Applied Analysis, 12 (2009), 269–298. Available from: https://arXiv.org/pdf/0811.4102  Google Scholar [43] I. Podlubny, Fractional Differential Equations, New York: Academic Press. San Diego, CA, USA, 1999.  Google Scholar [44] T. Pohlen, The Hadamard product and universal power series (Dissertation), Universit$\ddot {\rm {a}}$t Trier, (2009). Google Scholar [45] Y. N. Rabotnov, Creep Problems in Structural Members, North-Holland Series in Applied Mathematics and Mechanics, 1969. Google Scholar [46] E. D. Rainville, Special Functions, Macmillan Company, New York, Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.  Google Scholar [47] J. J. Rosales, M. Guía, F. Gmez, F. Aguilar and J. Martínez, Two dimensional fractional projectile motion in a resisting medium, Cent. Eur. J. Phys., 12 (2014), 517-520.  doi: 10.2478/s11534-014-0473-8.  Google Scholar [48] B. Ross, Fractional Calculus and Its Applications, proceedings of the international conference held at the University of New Haven, 1974.  Google Scholar [49] A. Saichev and M. Zaslavsky, Fractional kinetic equations: Solutions and applications, Chaos, 7 (1997), 753-764.  doi: 10.1063/1.166272.  Google Scholar [50] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, New York and London: Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar [51] R. K. Saxena, A. M. Mathai and H. J. Haubold, On fractional kinetic equations, Astrophys. Space Sci., 282 (2002), 281-287.   Google Scholar [52] R. K. Saxena, A. M. Mathai and H. J. Haubold, On generalized fractional kinetic equations, Physica A, 344 (2004), 657-664.  doi: 10.1016/j.physa.2004.06.048.  Google Scholar [53] R. K. Saxena, A. M. Mathai and H. J. Haubold, Solution of generalized fractional reaction-diffusion equations, Astrophys. Space Sci., 305 (2006), 305-313.  doi: 10.1007/s10509-006-9191-z.  Google Scholar [54] R. K. Saxena and S. L. Kalla, On the solutions of certain fractional kinetic equations, Appl. Math. Comput., 199 (2008), 504-511.  doi: 10.1016/j.amc.2007.10.005.  Google Scholar [55] G. Singh, P. Agarwal, M. Chand and S. Jain, Certain fractional kinetic equations involving generalized k-Bessel function, Transactions of A. Razmadze Mathematical Institute, 172 (2018), 559-570.  doi: 10.1016/j.trmi.2018.03.001.  Google Scholar [56] I. N. Sneddon, The Use of Integral Transforms, Tata McGraw-Hill, Delhi, 1979. Google Scholar [57] J. E. Solís-Pérez, J. F. Gómez-Aguilar and A. Atangana, Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws, Chaos, Solitons and Fractals, 114 (2018), 175-185.  doi: 10.1016/j.chaos.2018.06.032.  Google Scholar [58] M. R. Spiegel, Theory and Problems of Laplace Transforms, Schaums Outline Series, McGraw-Hill, New York, 1965.  Google Scholar [59] H. M. Srivastava, A. Cetinkaya and I. O. Kiymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput., 226 (2014), 484-491.  doi: 10.1016/j.amc.2013.10.032.  Google Scholar [60] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, Inc., Amsterdam, 2012. doi: 10.1016/B978-0-12-385218-2.00001-3.  Google Scholar [61] R. Srivastava and N. E. Cho, Some extended Pochhammer symbols and their applications involving generalized hypergeometric polynomials, Appl. Math. Comput., 234 (2014), 277-285.  doi: 10.1016/j.amc.2014.02.036.  Google Scholar [62] H. M. Srivastava and R. K. Saxena, Operators of fractional integration and their applications, Applied Mathematics and Computation, 118 (2001), 1-52.  doi: 10.1016/S0096-3003(99)00208-8.  Google Scholar [63] G. M. Zaslavsky, Fractional kinetic equation for Hamiltonian, Chaos. Physica D, 76 (1994), 110-122.  doi: 10.1016/0167-2789(94)90254-2.  Google Scholar
 [1] Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 709-722. doi: 10.3934/dcdss.2020039 [2] Amir Khan, Asaf Khan, Tahir Khan, Gul Zaman. Extension of triple Laplace transform for solving fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 755-768. doi: 10.3934/dcdss.2020042 [3] Rahmat Ali Khan, Yongjin Li, Fahd Jarad. Exact analytical solutions of fractional order telegraph equations via triple Laplace transform. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020427 [4] Valentina Casarino, Paolo Ciatti, Silvia Secco. Product structures and fractional integration along curves in the space. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 619-635. doi: 10.3934/dcdss.2013.6.619 [5] Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615 [6] Xavier Ros-Oton, Joaquim Serra. Local integration by parts and Pohozaev identities for higher order fractional Laplacians. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2131-2150. doi: 10.3934/dcds.2015.35.2131 [7] Thabet Abdeljawad. Fractional operators with boundary points dependent kernels and integration by parts. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 351-375. doi: 10.3934/dcdss.2020020 [8] Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417 [9] Jinggang Tan, Jingang Xiong. A Harnack inequality for fractional Laplace equations with lower order terms. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 975-983. doi: 10.3934/dcds.2011.31.975 [10] Claudia Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure & Applied Analysis, 2016, 15 (2) : 657-699. doi: 10.3934/cpaa.2016.15.657 [11] Krunal B. Kachhia. Comparative study of fractional Fokker-Planck equations with various fractional derivative operators. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 741-754. doi: 10.3934/dcdss.2020041 [12] Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031 [13] Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025 [14] Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 723-739. doi: 10.3934/dcdss.2020040 [15] Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems & Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27 [16] Ekta Mittal, Sunil Joshi. Note on a $k$-generalised fractional derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 797-804. doi: 10.3934/dcdss.2020045 [17] Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057 [18] Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 937-956. doi: 10.3934/dcdss.2020055 [19] Wen Li, Song Wang, Volker Rehbock. A 2nd-order one-point numerical integration scheme for fractional ordinary differential equations. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 273-287. doi: 10.3934/naco.2017018 [20] Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2019, 9 (1) : 1-38. doi: 10.3934/mcrf.2019001

2019 Impact Factor: 1.233