March  2020, 13(3): 797-804. doi: 10.3934/dcdss.2020045

Note on a $ k $-generalised fractional derivative

1. 

The IIS University, Jaipur, Rajasthan-302020, India

2. 

Manipal University Jaipur, Rajasthan-303007, India

Corresponding author: ekta.jaipur@gmail.com; sunil.joshi@jaipur.manipal.edu

Received  May 2018 Revised  August 2018 Published  March 2019

In this paper, we introduce the $ k $-generalised fractional derivatives with three parameters which reduced to $ k $-fractional Hilfer derivatives and $ k $-Riemann-Liouville fractional derivative as an interesting special cases. Further, we have also introduced some presumably new fascinating results which include the image power function, Laplace transform and composition of $ k $-Riemann-Liouville fractional integral with generalized composite fractional derivative. The technique developed in this paper can be used in other situation as well.

Citation: Ekta Mittal, Sunil Joshi. Note on a $ k $-generalised fractional derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 797-804. doi: 10.3934/dcdss.2020045
References:
[1]

R. Dıaz and E. Pariguan, On hypergeometric functions and pochhammer k-symbol, Divulg. Mat, 15 (2007), 179-192.   Google Scholar

[2]

G. A. Dorrego and R. A. Cerutti, The k-fractional hilfer derivative, International Journal of Mathematical Analysis, 7 (2013), 543-550.  doi: 10.12988/ijma.2013.13051.  Google Scholar

[3]

R. GarraR. GorenfloF. Polito and Ž Tomovski, Hilfer–prabhakar derivatives and some applications, Applied Mathematics and Computation, 242 (2014), 576-589.  doi: 10.1016/j.amc.2014.05.129.  Google Scholar

[4]

R. Hilfer et al., Applications of Fractional Calculus in Physics, vol. 35, World Scientific, 2000. doi: 10.1142/9789812817747.  Google Scholar

[5]

O. S. Iyiola, Solving k-fractional hilfer differential equations via combined fractional integral transform methods, British Journal of Mathematics & Computer Science, 4 (2014), 1427-1436.  doi: 10.9734/BJMCS/2014/9444.  Google Scholar

[6]

C. G. Kokologiannaki, Properties and inequalities of generalized k-gamma, beta and zeta functions, Int. J. Contemp. Math. Sciences, 5 (2010), 653-660.   Google Scholar

[7]

M. Mansour, Determining the k-generalized gamma function $\gamma$k (x) by functional equations, Int. J. Contemp. Math. Sciences, 4 (2009), 1037-1042.   Google Scholar

[8]

K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1993.  Google Scholar

[9]

G. MridulaP. ManoharL. Chanchalani and A. Subhash, On generalized composite fractional derivative, Walailak Journal of Science and Technology (WJST), 11 (2014), 1069-1076.   Google Scholar

[10]

S. Mubeen and G. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci, 7 (2012), 89-94.   Google Scholar

[11]

S. MubeenA. Rehman and F. Shaheen, Properties of k-gamma, k-beta and k-psi functions, Bothalia Journal, 5 (2014), 371-379.   Google Scholar

[12]

L. G. RomeroL. L. LuqueG. A. Dorrego and R. A. Cerutti, On the k-riemann-liouville fractional derivative, Int. J. Contemp. Math. Sci, 8 (2013), 41-51.  doi: 10.12988/ijcms.2013.13004.  Google Scholar

show all references

References:
[1]

R. Dıaz and E. Pariguan, On hypergeometric functions and pochhammer k-symbol, Divulg. Mat, 15 (2007), 179-192.   Google Scholar

[2]

G. A. Dorrego and R. A. Cerutti, The k-fractional hilfer derivative, International Journal of Mathematical Analysis, 7 (2013), 543-550.  doi: 10.12988/ijma.2013.13051.  Google Scholar

[3]

R. GarraR. GorenfloF. Polito and Ž Tomovski, Hilfer–prabhakar derivatives and some applications, Applied Mathematics and Computation, 242 (2014), 576-589.  doi: 10.1016/j.amc.2014.05.129.  Google Scholar

[4]

R. Hilfer et al., Applications of Fractional Calculus in Physics, vol. 35, World Scientific, 2000. doi: 10.1142/9789812817747.  Google Scholar

[5]

O. S. Iyiola, Solving k-fractional hilfer differential equations via combined fractional integral transform methods, British Journal of Mathematics & Computer Science, 4 (2014), 1427-1436.  doi: 10.9734/BJMCS/2014/9444.  Google Scholar

[6]

C. G. Kokologiannaki, Properties and inequalities of generalized k-gamma, beta and zeta functions, Int. J. Contemp. Math. Sciences, 5 (2010), 653-660.   Google Scholar

[7]

M. Mansour, Determining the k-generalized gamma function $\gamma$k (x) by functional equations, Int. J. Contemp. Math. Sciences, 4 (2009), 1037-1042.   Google Scholar

[8]

K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1993.  Google Scholar

[9]

G. MridulaP. ManoharL. Chanchalani and A. Subhash, On generalized composite fractional derivative, Walailak Journal of Science and Technology (WJST), 11 (2014), 1069-1076.   Google Scholar

[10]

S. Mubeen and G. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci, 7 (2012), 89-94.   Google Scholar

[11]

S. MubeenA. Rehman and F. Shaheen, Properties of k-gamma, k-beta and k-psi functions, Bothalia Journal, 5 (2014), 371-379.   Google Scholar

[12]

L. G. RomeroL. L. LuqueG. A. Dorrego and R. A. Cerutti, On the k-riemann-liouville fractional derivative, Int. J. Contemp. Math. Sci, 8 (2013), 41-51.  doi: 10.12988/ijcms.2013.13004.  Google Scholar

[1]

Haisheng Tan, Liuyan Liu, Hongyu Liang. Total $\{k\}$-domination in special graphs. Mathematical Foundations of Computing, 2018, 1 (3) : 255-263. doi: 10.3934/mfc.2018011

[2]

Silvia Frassu. Nonlinear Dirichlet problem for the nonlocal anisotropic operator $ L_K $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1847-1867. doi: 10.3934/cpaa.2019086

[3]

Jianqin Zhou, Wanquan Liu, Xifeng Wang, Guanglu Zhou. On the $ k $-error linear complexity for $ p^n $-periodic binary sequences via hypercube theory. Mathematical Foundations of Computing, 2019, 2 (4) : 279-297. doi: 10.3934/mfc.2019018

[4]

Adam Kanigowski, Federico Rodriguez Hertz, Kurt Vinhage. On the non-equivalence of the Bernoulli and $ K$ properties in dimension four. Journal of Modern Dynamics, 2018, 13: 221-250. doi: 10.3934/jmd.2018019

[5]

Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2020056

[6]

Pak Tung Ho. Prescribing $ Q $-curvature on $ S^n $ in the presence of symmetry. Communications on Pure & Applied Analysis, 2020, 19 (2) : 715-722. doi: 10.3934/cpaa.2020033

[7]

Huimin Zheng, Xuejun Guo, Hourong Qin. The Mahler measure of $ (x+1/x)(y+1/y)(z+1/z)+\sqrt{k} $. Electronic Research Archive, 2020, 28 (1) : 103-125. doi: 10.3934/era.2020007

[8]

Yong Xia, Ruey-Lin Sheu, Shu-Cherng Fang, Wenxun Xing. Double well potential function and its optimization in the $N$ -dimensional real space-part Ⅱ. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1307-1328. doi: 10.3934/jimo.2016074

[9]

Shu-Cherng Fang, David Y. Gao, Gang-Xuan Lin, Ruey-Lin Sheu, Wenxun Xing. Double well potential function and its optimization in the $N$ -dimensional real space-part Ⅰ. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1291-1305. doi: 10.3934/jimo.2016073

[10]

Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2020021

[11]

Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020079

[12]

Sugata Gangopadhyay, Goutam Paul, Nishant Sinha, Pantelimon Stǎnicǎ. Generalized nonlinearity of $ S$-boxes. Advances in Mathematics of Communications, 2018, 12 (1) : 115-122. doi: 10.3934/amc.2018007

[13]

Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129

[14]

Pak Tung Ho. Prescribing the $ Q' $-curvature in three dimension. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2285-2294. doi: 10.3934/dcds.2019096

[15]

Eun-Kyung Cho, Cunsheng Ding, Jong Yoon Hyun. A spectral characterisation of $ t $-designs and its applications. Advances in Mathematics of Communications, 2019, 13 (3) : 477-503. doi: 10.3934/amc.2019030

[16]

Zalman Balanov, Yakov Krasnov. On good deformations of $ A_m $-singularities. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1851-1866. doi: 10.3934/dcdss.2019122

[17]

Annalisa Cesaroni, Serena Dipierro, Matteo Novaga, Enrico Valdinoci. Minimizers of the $ p $-oscillation functional. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 6785-6799. doi: 10.3934/dcds.2019231

[18]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019129

[19]

Genni Fragnelli, Jerome A. Goldstein, Rosa Maria Mininni, Silvia Romanelli. Operators of order 2$ n $ with interior degeneracy. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020128

[20]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020328

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (91)
  • HTML views (589)
  • Cited by (0)

Other articles
by authors

[Back to Top]