March  2020, 13(3): 823-834. doi: 10.3934/dcdss.2020047

Dynamical behaviour of fractional-order predator-prey system of Holling-type

Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

* Corresponding author: koladematthewowolabi@tdtu.edu.vn (K. M. Owolabi)

Received  April 2018 Revised  May 2018 Published  March 2019

In this paper, the local derivative in time is replaced with the Caputo-Fabrizio fractional derivative of order $ \alpha\in(0, 1) $. A two-step fractional version of the Adams-Bashforth method is formulated for the approximation of this derivative. To enhance the correct choice of parameters when numerically simulating the full-system, we examine the stability analysis of the main equation. Two important examples are drawn to explore the dynamic richness of the predator-prey model with Holling type. Simulation results at different instances of $ \alpha $ is in agreement with the theoretical findings.

Citation: Kolade M. Owolabi. Dynamical behaviour of fractional-order predator-prey system of Holling-type. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 823-834. doi: 10.3934/dcdss.2020047
References:
[1]

H. I. Abdel-Gawad and K. M. Saad, On the behaviour of solutions of the two-cell cubic autocatalator, ANZIAM, 44 (2002), E1–E32. doi: 10.1017/S1446181100007859.  Google Scholar

[2]

P. AgarwalA. Berdyshev and E. Karimov, Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative, Results in Mathematics, 17 (2017), 1235-1257.  doi: 10.1007/s00025-016-0620-1.  Google Scholar

[3]

P. Agarwal and A. A. El-Sayed, Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation, Physica A: Statistical Mechanics and its Applications, 500 (2018), 40-49.  doi: 10.1016/j.physa.2018.02.014.  Google Scholar

[4]

P. AgarwalS. Jain and T. Mansour, Further extended Caputo fractional derivative operator and its applications, Russian Journal of Mathematical Physics, 24 (2017), 415-425.  doi: 10.1134/S106192081704001X.  Google Scholar

[5]

A. Atangana, On the stability and convergence of the time-fractional variable order telegraph equation, Journal of Computational Physics, 293 (2015), 104-114.  doi: 10.1016/j.jcp.2014.12.043.  Google Scholar

[6]

A. Atangana, On the new fractional derivative and application to Fisher's reaction-diffusion, Applied Mathematics and Computation, 273 (2016), 948-956.  doi: 10.1016/j.amc.2015.10.021.  Google Scholar

[7]

A. Atangana and B. S. T. Alkahtani, New model of groundwater owing within a confine aquifer: Application of Caputo-Fabrizio derivative, Arabian Journal of Geosciences, 9 (2016), 1-6.   Google Scholar

[8]

A. Atangana and R. T. Alqahtani, Numerical approximation of the space-time Caputo-Fabrizio fractional derivative and application to groundwater pollution equation, Advances in Difference Equations, 2016 (2016), Paper No. 156, 13 pp. doi: 10.1186/s13662-016-0871-x.  Google Scholar

[9]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[10]

A. Atangana and K. M. Owolabi, New numerical approach for fractional differential equations, Mathematical Modelling of Natural Phenomena, 13 (2018), Art. 3, 21 pp, https://doi.org/10.1051/mmnp/2018010 doi: 10.1051/mmnp/2018010.  Google Scholar

[11]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 73-85.   Google Scholar

[12]

M. Caputo and M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progress in Fractional Differentiation and Applications, 2 (2016), 1-11.  doi: 10.18576/pfda/020101.  Google Scholar

[13]

J. F. Gómez-Aguilar, H. Yépez-Martínez, J. Torres-Jiménez, T. Córdova-Fraga, R. F. Escobar-Jiménez and V. H. Olivares-Peregrino, Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Advances in Difference Equations, 2017 (2017), Paper No. 68, 18 pp. doi: 10.1186/s13662-017-1120-7.  Google Scholar

[14]

J. F. Gómez-Aguilar, Analytical and numerical solutions of the telegraph equation using the Atangana-Caputo fractional order derivative, Journal of Electromagnetic Waves and Applications, 32 (2018), 695-712.   Google Scholar

[15]

J. F. Gómez-Aguilar, Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations, Physica A: Statistical Mechanics and its Applications, 494 (2018), 52-75.  doi: 10.1016/j.physa.2017.12.007.  Google Scholar

[16]

J. F. Gómez-AguilarR. F. Escobar-JiménezM. G. López-López and V. M. Alvarado-Martínez, Analysis of projectile motion: A comparative study using fractional operators with power law, exponential decay and Mittag-Leffler kernel, The European Physical Journal Plus, 133 (2018), 1-14.   Google Scholar

[17]

J. Huang and D. Xiao, Analyses of bifurcations and stability in a predator-prey system with Holling type-Ⅳ functional response, Acta Mathematicae Applicatae Sinica, English Series, 20 (2004), 167-178.  doi: 10.1007/s10255-004-0159-x.  Google Scholar

[18]

V. F. Morales-Delgado, J. F. Gómez-Aguilar, H. Yépez-Martínez, D. Baleanu, R. F. Escobar-Jimenez and V. H. Olivares-Peregrino, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Advances in Difference Equations, 2016 (2016), Paper No. 164, 17 pp. doi: 10.1186/s13662-016-0891-6.  Google Scholar

[19]

K. M. Owolabi, Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems, Chaos, Solitons and Fractals, 93 (2016), 89-98.  doi: 10.1016/j.chaos.2016.10.005.  Google Scholar

[20]

K. M. Owolabi, Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order, Communications in Nonlinear Science and Numerical Simulation, 44 (2017), 304-317.  doi: 10.1016/j.cnsns.2016.08.021.  Google Scholar

[21]

K. M. Owolabi and A. Atangana, Analysis of mathematics and numerical pattern formation in superdiffusive fractional multicomponent system, Advances in Applied Mathematics and Mechanics, 9 (2017), 1438-1460.  doi: 10.4208/aamm.OA-2016-0115.  Google Scholar

[22]

K. M. Owolabi and A. Atangana, Numerical simulation of noninteger order system in subdiffusive, diffusive, and superdiffusive scenarios, Journal of Computational and Nonlinear Dynamics, 12 (2017), 031010-1, 7pages. Google Scholar

[23]

K. M. Owolabi and A. Atangana, Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reaction-diffusion systems, Computational and Applied Mathematics, 37 (2018), 2166-2189.  doi: 10.1007/s40314-017-0445-x.  Google Scholar

[24]

K. M. Owolabi, Mathematical modelling and analysis of two-component system with Caputo fractional derivative order, Chaos, Solitons and Fractals, 103 (2017), 544-554.  doi: 10.1016/j.chaos.2017.07.013.  Google Scholar

[25]

K. M. Owolabi and A. Atangana, Numerical approximation of nonlinear fractional parabolic differential equations with Caputo-Fabrizio derivative in Riemann-Liouville sense, Chaos, Solitons and Fractals, 99 (2017), 171-179.  doi: 10.1016/j.chaos.2017.04.008.  Google Scholar

[26]

K. M. Owolabi and A. Atangana, Analysis and application of new fractional Adams-Bashforth scheme with Caputo-Fabrizio derivative, Chaos, Solitons and Fractals, 105 (2017), 111-119.  doi: 10.1016/j.chaos.2017.10.020.  Google Scholar

[27]

K. M. Owolabi, Mathematical analysis and numerical simulation of chaotic noninteger order Differential systems with Riemann-Liouville derivative, Numerical Methods for Partial Differential Equations, 34 (2018), 274-295.  doi: 10.1002/num.22197.  Google Scholar

[28]

K. M. Owolabi, Riemann-Liouville fractional derivative and application to model chaotic differential equations, Progress in Fractional Differentiation and Applications, 4 (2018), 99-110.  doi: 10.18576/pfda/040204.  Google Scholar

[29]

K. M. Owolabi, Numerical approach to fractional blow-up equations with Atangana-Baleanu derivative in Riemann-Liouville sense, Mathematical Modelling of Natural Phenomena, 13 (2018), Art. 7, 17 pp. doi: 10.1051/mmnp/2018006.  Google Scholar

[30]

K. M. Owolabi, Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator, The European Physical Journal Plus, 133 (2018), 98. doi: 10.1140/epjp/i2018-11951-x.  Google Scholar

[31]

K. M. Owolabi and A. Atangana, Robustness of fractional difference schemes via the Caputo subdiffusion-reaction equations, Chaos, Solitons and Fractals, 111 (2018), 119-127.  doi: 10.1016/j.chaos.2018.04.019.  Google Scholar

[32]

K. M. Owolabi, Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative, The European physical Journal Plus, 133 (2018), 15. doi: 10.1140/epjp/i2018-11863-9.  Google Scholar

[33]

E. Pindza and K. M. Owolabi, Fourier spectral method for higher order space fractional reaction-diffusion equations, Communications in Nonlinear Science and Numerical Simulation, 40 (2016), 112-128.  doi: 10.1016/j.cnsns.2016.04.020.  Google Scholar

[34]

M. V. Ruzhansky, Y. J. Cho, P. Agarwal and I. Area, Advances in Real and Complex Analysis with Applications, Birkhuser, 2017.  Google Scholar

[35]

K. M. Saad, An approximate analytical solution of coupled nonlinear fractional diffusion equations, Journal of Fractional Calculus and Applications, 5 (2014), 58-72.   Google Scholar

[36]

K. M. Saad, Comparing the Caputo, Caputo-Fabrizio and Atangana-Baleanu derivative with fractional order: Fractional cubic isothermal auto-catalytic chemical system, The European Physical Journal Plus, 133 (2018), 94. doi: 10.1140/epjp/i2018-11947-6.  Google Scholar

[37]

X. J. Yang, Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems, Thermal Science, 21 (2017), 1161-1171.  doi: 10.2298/TSCI161216326Y.  Google Scholar

[38]

X. J. YangF. Gao and H. M. Srivastava, A new computational approach for solving nonlinear local fractional PDEs, Journal of Computational and Applied Mathematics, 339 (2018), 285-296.  doi: 10.1016/j.cam.2017.10.007.  Google Scholar

[39]

H. Yépez-MartínezJ. F. Gómez-AguilarI. O. SosaJ. M. Reyes and J. Torres-Jiménez, The Feng's first integral method applied to the nonlinear mKdV space-time fractional partial differential equation, Revista Mexicana de Física, 62 (2016), 310-316.   Google Scholar

show all references

References:
[1]

H. I. Abdel-Gawad and K. M. Saad, On the behaviour of solutions of the two-cell cubic autocatalator, ANZIAM, 44 (2002), E1–E32. doi: 10.1017/S1446181100007859.  Google Scholar

[2]

P. AgarwalA. Berdyshev and E. Karimov, Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative, Results in Mathematics, 17 (2017), 1235-1257.  doi: 10.1007/s00025-016-0620-1.  Google Scholar

[3]

P. Agarwal and A. A. El-Sayed, Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation, Physica A: Statistical Mechanics and its Applications, 500 (2018), 40-49.  doi: 10.1016/j.physa.2018.02.014.  Google Scholar

[4]

P. AgarwalS. Jain and T. Mansour, Further extended Caputo fractional derivative operator and its applications, Russian Journal of Mathematical Physics, 24 (2017), 415-425.  doi: 10.1134/S106192081704001X.  Google Scholar

[5]

A. Atangana, On the stability and convergence of the time-fractional variable order telegraph equation, Journal of Computational Physics, 293 (2015), 104-114.  doi: 10.1016/j.jcp.2014.12.043.  Google Scholar

[6]

A. Atangana, On the new fractional derivative and application to Fisher's reaction-diffusion, Applied Mathematics and Computation, 273 (2016), 948-956.  doi: 10.1016/j.amc.2015.10.021.  Google Scholar

[7]

A. Atangana and B. S. T. Alkahtani, New model of groundwater owing within a confine aquifer: Application of Caputo-Fabrizio derivative, Arabian Journal of Geosciences, 9 (2016), 1-6.   Google Scholar

[8]

A. Atangana and R. T. Alqahtani, Numerical approximation of the space-time Caputo-Fabrizio fractional derivative and application to groundwater pollution equation, Advances in Difference Equations, 2016 (2016), Paper No. 156, 13 pp. doi: 10.1186/s13662-016-0871-x.  Google Scholar

[9]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[10]

A. Atangana and K. M. Owolabi, New numerical approach for fractional differential equations, Mathematical Modelling of Natural Phenomena, 13 (2018), Art. 3, 21 pp, https://doi.org/10.1051/mmnp/2018010 doi: 10.1051/mmnp/2018010.  Google Scholar

[11]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 73-85.   Google Scholar

[12]

M. Caputo and M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progress in Fractional Differentiation and Applications, 2 (2016), 1-11.  doi: 10.18576/pfda/020101.  Google Scholar

[13]

J. F. Gómez-Aguilar, H. Yépez-Martínez, J. Torres-Jiménez, T. Córdova-Fraga, R. F. Escobar-Jiménez and V. H. Olivares-Peregrino, Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Advances in Difference Equations, 2017 (2017), Paper No. 68, 18 pp. doi: 10.1186/s13662-017-1120-7.  Google Scholar

[14]

J. F. Gómez-Aguilar, Analytical and numerical solutions of the telegraph equation using the Atangana-Caputo fractional order derivative, Journal of Electromagnetic Waves and Applications, 32 (2018), 695-712.   Google Scholar

[15]

J. F. Gómez-Aguilar, Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations, Physica A: Statistical Mechanics and its Applications, 494 (2018), 52-75.  doi: 10.1016/j.physa.2017.12.007.  Google Scholar

[16]

J. F. Gómez-AguilarR. F. Escobar-JiménezM. G. López-López and V. M. Alvarado-Martínez, Analysis of projectile motion: A comparative study using fractional operators with power law, exponential decay and Mittag-Leffler kernel, The European Physical Journal Plus, 133 (2018), 1-14.   Google Scholar

[17]

J. Huang and D. Xiao, Analyses of bifurcations and stability in a predator-prey system with Holling type-Ⅳ functional response, Acta Mathematicae Applicatae Sinica, English Series, 20 (2004), 167-178.  doi: 10.1007/s10255-004-0159-x.  Google Scholar

[18]

V. F. Morales-Delgado, J. F. Gómez-Aguilar, H. Yépez-Martínez, D. Baleanu, R. F. Escobar-Jimenez and V. H. Olivares-Peregrino, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Advances in Difference Equations, 2016 (2016), Paper No. 164, 17 pp. doi: 10.1186/s13662-016-0891-6.  Google Scholar

[19]

K. M. Owolabi, Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems, Chaos, Solitons and Fractals, 93 (2016), 89-98.  doi: 10.1016/j.chaos.2016.10.005.  Google Scholar

[20]

K. M. Owolabi, Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order, Communications in Nonlinear Science and Numerical Simulation, 44 (2017), 304-317.  doi: 10.1016/j.cnsns.2016.08.021.  Google Scholar

[21]

K. M. Owolabi and A. Atangana, Analysis of mathematics and numerical pattern formation in superdiffusive fractional multicomponent system, Advances in Applied Mathematics and Mechanics, 9 (2017), 1438-1460.  doi: 10.4208/aamm.OA-2016-0115.  Google Scholar

[22]

K. M. Owolabi and A. Atangana, Numerical simulation of noninteger order system in subdiffusive, diffusive, and superdiffusive scenarios, Journal of Computational and Nonlinear Dynamics, 12 (2017), 031010-1, 7pages. Google Scholar

[23]

K. M. Owolabi and A. Atangana, Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reaction-diffusion systems, Computational and Applied Mathematics, 37 (2018), 2166-2189.  doi: 10.1007/s40314-017-0445-x.  Google Scholar

[24]

K. M. Owolabi, Mathematical modelling and analysis of two-component system with Caputo fractional derivative order, Chaos, Solitons and Fractals, 103 (2017), 544-554.  doi: 10.1016/j.chaos.2017.07.013.  Google Scholar

[25]

K. M. Owolabi and A. Atangana, Numerical approximation of nonlinear fractional parabolic differential equations with Caputo-Fabrizio derivative in Riemann-Liouville sense, Chaos, Solitons and Fractals, 99 (2017), 171-179.  doi: 10.1016/j.chaos.2017.04.008.  Google Scholar

[26]

K. M. Owolabi and A. Atangana, Analysis and application of new fractional Adams-Bashforth scheme with Caputo-Fabrizio derivative, Chaos, Solitons and Fractals, 105 (2017), 111-119.  doi: 10.1016/j.chaos.2017.10.020.  Google Scholar

[27]

K. M. Owolabi, Mathematical analysis and numerical simulation of chaotic noninteger order Differential systems with Riemann-Liouville derivative, Numerical Methods for Partial Differential Equations, 34 (2018), 274-295.  doi: 10.1002/num.22197.  Google Scholar

[28]

K. M. Owolabi, Riemann-Liouville fractional derivative and application to model chaotic differential equations, Progress in Fractional Differentiation and Applications, 4 (2018), 99-110.  doi: 10.18576/pfda/040204.  Google Scholar

[29]

K. M. Owolabi, Numerical approach to fractional blow-up equations with Atangana-Baleanu derivative in Riemann-Liouville sense, Mathematical Modelling of Natural Phenomena, 13 (2018), Art. 7, 17 pp. doi: 10.1051/mmnp/2018006.  Google Scholar

[30]

K. M. Owolabi, Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator, The European Physical Journal Plus, 133 (2018), 98. doi: 10.1140/epjp/i2018-11951-x.  Google Scholar

[31]

K. M. Owolabi and A. Atangana, Robustness of fractional difference schemes via the Caputo subdiffusion-reaction equations, Chaos, Solitons and Fractals, 111 (2018), 119-127.  doi: 10.1016/j.chaos.2018.04.019.  Google Scholar

[32]

K. M. Owolabi, Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative, The European physical Journal Plus, 133 (2018), 15. doi: 10.1140/epjp/i2018-11863-9.  Google Scholar

[33]

E. Pindza and K. M. Owolabi, Fourier spectral method for higher order space fractional reaction-diffusion equations, Communications in Nonlinear Science and Numerical Simulation, 40 (2016), 112-128.  doi: 10.1016/j.cnsns.2016.04.020.  Google Scholar

[34]

M. V. Ruzhansky, Y. J. Cho, P. Agarwal and I. Area, Advances in Real and Complex Analysis with Applications, Birkhuser, 2017.  Google Scholar

[35]

K. M. Saad, An approximate analytical solution of coupled nonlinear fractional diffusion equations, Journal of Fractional Calculus and Applications, 5 (2014), 58-72.   Google Scholar

[36]

K. M. Saad, Comparing the Caputo, Caputo-Fabrizio and Atangana-Baleanu derivative with fractional order: Fractional cubic isothermal auto-catalytic chemical system, The European Physical Journal Plus, 133 (2018), 94. doi: 10.1140/epjp/i2018-11947-6.  Google Scholar

[37]

X. J. Yang, Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems, Thermal Science, 21 (2017), 1161-1171.  doi: 10.2298/TSCI161216326Y.  Google Scholar

[38]

X. J. YangF. Gao and H. M. Srivastava, A new computational approach for solving nonlinear local fractional PDEs, Journal of Computational and Applied Mathematics, 339 (2018), 285-296.  doi: 10.1016/j.cam.2017.10.007.  Google Scholar

[39]

H. Yépez-MartínezJ. F. Gómez-AguilarI. O. SosaJ. M. Reyes and J. Torres-Jiménez, The Feng's first integral method applied to the nonlinear mKdV space-time fractional partial differential equation, Revista Mexicana de Física, 62 (2016), 310-316.   Google Scholar

Figure 1.  Dynamic behaviour of fractional system (16) with $ \alpha = 0.50 $. Other parameters are as fixed in (17)
Figure 2.  Dynamic behaviour of fractional system (16) with α = 0:79. Other parameters are as fixed in (17).
Figure 3.  Dynamic behaviour of fractional system (16) with $ \alpha = 0.91 $. Other parameters are as fixed in (17)
Figure 4.  A strange attractor for dynamic system (16) with $ \alpha = 0.48 $
Figure 5.  One-dimensional distribution of time-fractional reaction-diffusion system (19) for $ \alpha = 0.11 $
Figure 6.  One-dimensional distribution of time-fractional reaction-diffusion system (18) for α = 0:25
Figure 7.  One-dimensional distribution of time-fractional reaction-diffusion system (18) for α = 0:45
Figure 8.  One-dimensional distribution of time-fractional reaction-diffusion system (18) for α = 0:79
Figure 9.  One-dimensional distribution of time-fractional reaction-diffusion system (18) for α = 0:91
[1]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057

[2]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[3]

Zengji Du, Xiao Chen, Zhaosheng Feng. Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1203-1214. doi: 10.3934/dcdss.2014.7.1203

[4]

Kexin Wang. Influence of feedback controls on the global stability of a stochastic predator-prey model with Holling type Ⅱ response and infinite delays. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1699-1714. doi: 10.3934/dcdsb.2019247

[5]

Ming Liu, Dongpo Hu, Fanwei Meng. Stability and bifurcation analysis in a delay-induced predator-prey model with Michaelis-Menten type predator harvesting. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020259

[6]

Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure & Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481

[7]

Guanqi Liu, Yuwen Wang. Stochastic spatiotemporal diffusive predator-prey systems. Communications on Pure & Applied Analysis, 2018, 17 (1) : 67-84. doi: 10.3934/cpaa.2018005

[8]

Zhifu Xie. Turing instability in a coupled predator-prey model with different Holling type functional responses. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1621-1628. doi: 10.3934/dcdss.2011.4.1621

[9]

Dingyong Bai, Jianshe Yu, Yun Kang. Spatiotemporal dynamics of a diffusive predator-prey model with generalist predator. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020132

[10]

Leonid Braverman, Elena Braverman. Stability analysis and bifurcations in a diffusive predator-prey system. Conference Publications, 2009, 2009 (Special) : 92-100. doi: 10.3934/proc.2009.2009.92

[11]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[12]

Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020148

[13]

Ronald E. Mickens. Analysis of a new class of predator-prey model. Conference Publications, 2001, 2001 (Special) : 265-269. doi: 10.3934/proc.2001.2001.265

[14]

Xun Cao, Weihua Jiang. Double zero singularity and spatiotemporal patterns in a diffusive predator-prey model with nonlocal prey competition. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020069

[15]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[16]

Zhijun Liu, Weidong Wang. Persistence and periodic solutions of a nonautonomous predator-prey diffusion with Holling III functional response and continuous delay. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 653-662. doi: 10.3934/dcdsb.2004.4.653

[17]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

[18]

Safia Slimani, Paul Raynaud de Fitte, Islam Boussaada. Dynamics of a prey-predator system with modified Leslie-Gower and Holling type Ⅱ schemes incorporating a prey refuge. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5003-5039. doi: 10.3934/dcdsb.2019042

[19]

Nguyen Huu Du, Nguyen Hai Dang. Asymptotic behavior of Kolmogorov systems with predator-prey type in random environment. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2693-2712. doi: 10.3934/cpaa.2014.13.2693

[20]

Ting-Hao Hsu, Gail S. K. Wolkowicz. A criterion for the existence of relaxation oscillations with applications to predator-prey systems and an epidemic model. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1257-1277. doi: 10.3934/dcdsb.2019219

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (294)
  • HTML views (738)
  • Cited by (0)

Other articles
by authors

[Back to Top]