March  2020, 13(3): 911-923. doi: 10.3934/dcdss.2020053

Existence results of Hilfer integro-differential equations with fractional order

1. 

Department of Mathematics, GTN Arts College, Dindigul - 624 004, Tamil Nadu, India

2. 

PG and Research Department of Mathematics, Kongunadu Arts and Science College(Autonomous), Coimbatore - 641 029, Tamil Nadu, India

3. 

Department of Mathematics, Sri Eshwar College of Engineering, Coimbatore - 641 202, Tamil Nadu, India

4. 

Department of Mathematics, Faculty of Education, Harran University, Sanliurfa, Turkey

* Corresponding author: H. M. Baskonus

Received  July 2018 Revised  September 2018 Published  March 2019

The paper is relevance with Hilfer derivative with fractional order which is generalized case of R-L and Caputo's sense. We ensured the solution using noncompact measure and M$ \ddot{\text{o}} $nch's fixed point technique. Illustrative examples are included for the applicability of presented technique.

Citation: Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 911-923. doi: 10.3934/dcdss.2020053
References:
[1]

R. P. AgarwalB. AhmadA. Alsaedi and N. Shahzad, Existence and dimension of the set of mild solutions to semilinear fractional differential inclusions, Advance in Difference Equations, 74 (2012), 1-10.  doi: 10.1186/1687-1847-2012-74.  Google Scholar

[2]

R. Almeida, What is the best fractional derivative to fit data?, Applicable Analysis and Discrete Mathematics, 11 (2017), 358-368.  doi: 10.2298/AADM170428002A.  Google Scholar

[3]

J. Banas and K. Goebel, Measure of Noncompactness in Banach Space, Lecture Notes in Pure and Applied Mathematics, Marcell Dekker, New York, 1980.  Google Scholar

[4]

H. M. BaskonusT. MekkaouiZ. Hammouch and H. Bulut, Active Control of a Chaotic Fractional Order Economic System, Entropy, 17 (2015), 5771-5783.  doi: 10.3390/e17064255.  Google Scholar

[5]

A. H. Bhrawy and M. A. Zaky, Shifted fractional-order Jacobi orthogonal functions: Application to a system of fractional differential equations, Applied Mathematical Modelling, 40 (2016), 832-845.  doi: 10.1016/j.apm.2015.06.012.  Google Scholar

[6]

C. Cattani and A. Ciancio, On the fractal distribution of primes and prime-indexed primes by the binary image analysis, Physica A, 460 (2016), 222-229.  doi: 10.1016/j.physa.2016.05.013.  Google Scholar

[7]

M. DokuyucuE. CelikH. Bulut and H. M. Baskonus, Cancer treatment model with the Caputo-Fabrizio fractional derivative, The European Physical Journal Plus, 133 (2018), 92.  doi: 10.1140/epjp/i2018-11950-y.  Google Scholar

[8]

K. M. FuratiM. D. Kassim and N. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Computers & Mathematics with Applications, 64 (2012), 1612-1626.  doi: 10.1016/j.camwa.2012.01.009.  Google Scholar

[9]

R. GarraR. GorenfloF. Polito and Z. Tomovski, Hilfer-Prabhakar derivatives and some applications, Applied Mathematics and Computation, 242 (2014), 576-589.  doi: 10.1016/j.amc.2014.05.129.  Google Scholar

[10]

H. Gu and J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Applied Mathematics and Computation, 257 (2015), 344-354.  doi: 10.1016/j.amc.2014.10.083.  Google Scholar

[11]

R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. doi: 10.1142/9789812817747.  Google Scholar

[12]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Application of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[13]

V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Analysis: Theory, Methods & Applications, 69 (2008), 2677-2682.  doi: 10.1016/j.na.2007.08.042.  Google Scholar

[14]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, Wiley, New York, 1993.  Google Scholar

[15]

H. M$\ddot{\text{o}}$nch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, 4 (1980), 985-999.  doi: 10.1016/0362-546X(80)90010-3.  Google Scholar

[16] I. Podlubny, Fractional Differential Equations, vol., 198, Academic Press, an Diego, 1999.   Google Scholar
[17]

C. Ravichandran and J. J. Trujillo, Controllability of impulsive fractional functional integro-diffrential equations in Banach spaces, Journal of Function Spaces and Applications, 2013 (2013), Art. ID 812501, 8 pp. doi: 10.1155/2013/812501.  Google Scholar

[18]

C. Ravichandran and D. Baleanu, Existence results for fractional integro-differential evolution equations with infinite delay in Banach spaces, Advances in Difference Equations, 2013 (2013), 1-12.  doi: 10.1186/1687-1847-2013-215.  Google Scholar

[19]

C. Ravichandran and D. Baleanu, On the controllability of fractional functional integro-differential systems with an infinite delay in Banach spaces, Advances in Difference Equations, 291 (2013), 1-13.  doi: 10.1186/1687-1847-2013-291.  Google Scholar

[20]

C. RavichandranK. JothimaniH. M. Baskonus and N. Valliammal, New results on nondensely characterized integro-differential equations with fractional order, The European Physical Journal Plus, 133 (2018), 1-10.   Google Scholar

[21]

A. Saadatmandi, Bernstein operational matrix of fractional derivatives and its applications, Applied Mathematical Modelling, 38 (2014), 1365-1372.  doi: 10.1016/j.apm.2013.08.007.  Google Scholar

[22]

T. Sandev, R. Metzler and Z. Tomoveski, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative, Journal of Physics A: Mathematical and Theoretical, 44 (2011), 255203, 21 pp. doi: 10.1088/1751-8113/44/25/255203.  Google Scholar

[23]

A. R. Seadawy, Fractional solitary wave solutions of the nonlinear higher-order extended KdV equation in a stratified shear flow: Part Ⅰ, Computers & Mathematics with Applications, 70 (2015), 345-352.  doi: 10.1016/j.camwa.2015.04.015.  Google Scholar

[24]

X. B Shu and Q. Wang, The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order $1 < \alpha < 2, $, Computers & Mathematics with Applications, 64 (2012), 2100-2110.  doi: 10.1016/j.camwa.2012.04.006.  Google Scholar

[25]

R. SubashiniK. JothimaniS. Saranya and C. Ravichandran, On the results of Hilfer fractional derivative with nonlocal conditions, International Journal of Pure and Applied Mathematics, 118 (2018), 277-289.   Google Scholar

[26]

J. A. Tenreiro Machado and M. Mata, Pseudo Phase Plane and Fractional Calculus modeling of western global economic downturn, Communications in Nonlinear Science and Numerical Simulation, 22 (2015), 396-406.  doi: 10.1016/j.cnsns.2014.08.032.  Google Scholar

[27]

J. A. Tenreiro Machado, Fractional dynamics in the Rayleigh's piston, Communications in Nonlinear Science and Numerical Simulation, 31 (2016), 76-82.   Google Scholar

[28]

N. ValliammalC. Ravichandran and J. H. Park, On the controllability of fractional neutral integrodifferential delay equations with nonlocal conditions, Mathematical Methods in the Applied Sciences, 40 (2017), 5044-5055.  doi: 10.1002/mma.4369.  Google Scholar

[29]

V. VijayakumarC. RavichandranR. Murugesu and J. J. Trujillo, Controllability results for a class of fractional semilinear integro-differential inclusions via resolvent operators, Applied Mathematics and Computation, 247 (2014), 152-161.  doi: 10.1016/j.amc.2014.08.080.  Google Scholar

[30]

J. R. Wang and Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Applied Mathematics and Computation, 266 (2015), 850-859.  doi: 10.1016/j.amc.2015.05.144.  Google Scholar

[31]

M. Yang and Q. Wang, Existence of mild solutions for a class of Hilfer fractional evolution equations With nonlocal conditions, Fractional Calculus and Applied Analysis, 20 (2017), 679-705.  doi: 10.1515/fca-2017-0036.  Google Scholar

[32]

Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014. doi: 10.1142/9069.  Google Scholar

[33]

Y. Zhou and F. Jiao, Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Analysis: Real World Applications, 11 (2010), 4465-4475.  doi: 10.1016/j.nonrwa.2010.05.029.  Google Scholar

[34]

Y. ZhouL. Zhang and X. H. Shen, Existence of mild solutions for fractional evolution equations, Journal of Integral Equations and Applications, 25 (2013), 557-585.  doi: 10.1216/JIE-2013-25-4-557.  Google Scholar

show all references

References:
[1]

R. P. AgarwalB. AhmadA. Alsaedi and N. Shahzad, Existence and dimension of the set of mild solutions to semilinear fractional differential inclusions, Advance in Difference Equations, 74 (2012), 1-10.  doi: 10.1186/1687-1847-2012-74.  Google Scholar

[2]

R. Almeida, What is the best fractional derivative to fit data?, Applicable Analysis and Discrete Mathematics, 11 (2017), 358-368.  doi: 10.2298/AADM170428002A.  Google Scholar

[3]

J. Banas and K. Goebel, Measure of Noncompactness in Banach Space, Lecture Notes in Pure and Applied Mathematics, Marcell Dekker, New York, 1980.  Google Scholar

[4]

H. M. BaskonusT. MekkaouiZ. Hammouch and H. Bulut, Active Control of a Chaotic Fractional Order Economic System, Entropy, 17 (2015), 5771-5783.  doi: 10.3390/e17064255.  Google Scholar

[5]

A. H. Bhrawy and M. A. Zaky, Shifted fractional-order Jacobi orthogonal functions: Application to a system of fractional differential equations, Applied Mathematical Modelling, 40 (2016), 832-845.  doi: 10.1016/j.apm.2015.06.012.  Google Scholar

[6]

C. Cattani and A. Ciancio, On the fractal distribution of primes and prime-indexed primes by the binary image analysis, Physica A, 460 (2016), 222-229.  doi: 10.1016/j.physa.2016.05.013.  Google Scholar

[7]

M. DokuyucuE. CelikH. Bulut and H. M. Baskonus, Cancer treatment model with the Caputo-Fabrizio fractional derivative, The European Physical Journal Plus, 133 (2018), 92.  doi: 10.1140/epjp/i2018-11950-y.  Google Scholar

[8]

K. M. FuratiM. D. Kassim and N. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Computers & Mathematics with Applications, 64 (2012), 1612-1626.  doi: 10.1016/j.camwa.2012.01.009.  Google Scholar

[9]

R. GarraR. GorenfloF. Polito and Z. Tomovski, Hilfer-Prabhakar derivatives and some applications, Applied Mathematics and Computation, 242 (2014), 576-589.  doi: 10.1016/j.amc.2014.05.129.  Google Scholar

[10]

H. Gu and J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Applied Mathematics and Computation, 257 (2015), 344-354.  doi: 10.1016/j.amc.2014.10.083.  Google Scholar

[11]

R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. doi: 10.1142/9789812817747.  Google Scholar

[12]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Application of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[13]

V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Analysis: Theory, Methods & Applications, 69 (2008), 2677-2682.  doi: 10.1016/j.na.2007.08.042.  Google Scholar

[14]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, Wiley, New York, 1993.  Google Scholar

[15]

H. M$\ddot{\text{o}}$nch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, 4 (1980), 985-999.  doi: 10.1016/0362-546X(80)90010-3.  Google Scholar

[16] I. Podlubny, Fractional Differential Equations, vol., 198, Academic Press, an Diego, 1999.   Google Scholar
[17]

C. Ravichandran and J. J. Trujillo, Controllability of impulsive fractional functional integro-diffrential equations in Banach spaces, Journal of Function Spaces and Applications, 2013 (2013), Art. ID 812501, 8 pp. doi: 10.1155/2013/812501.  Google Scholar

[18]

C. Ravichandran and D. Baleanu, Existence results for fractional integro-differential evolution equations with infinite delay in Banach spaces, Advances in Difference Equations, 2013 (2013), 1-12.  doi: 10.1186/1687-1847-2013-215.  Google Scholar

[19]

C. Ravichandran and D. Baleanu, On the controllability of fractional functional integro-differential systems with an infinite delay in Banach spaces, Advances in Difference Equations, 291 (2013), 1-13.  doi: 10.1186/1687-1847-2013-291.  Google Scholar

[20]

C. RavichandranK. JothimaniH. M. Baskonus and N. Valliammal, New results on nondensely characterized integro-differential equations with fractional order, The European Physical Journal Plus, 133 (2018), 1-10.   Google Scholar

[21]

A. Saadatmandi, Bernstein operational matrix of fractional derivatives and its applications, Applied Mathematical Modelling, 38 (2014), 1365-1372.  doi: 10.1016/j.apm.2013.08.007.  Google Scholar

[22]

T. Sandev, R. Metzler and Z. Tomoveski, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative, Journal of Physics A: Mathematical and Theoretical, 44 (2011), 255203, 21 pp. doi: 10.1088/1751-8113/44/25/255203.  Google Scholar

[23]

A. R. Seadawy, Fractional solitary wave solutions of the nonlinear higher-order extended KdV equation in a stratified shear flow: Part Ⅰ, Computers & Mathematics with Applications, 70 (2015), 345-352.  doi: 10.1016/j.camwa.2015.04.015.  Google Scholar

[24]

X. B Shu and Q. Wang, The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order $1 < \alpha < 2, $, Computers & Mathematics with Applications, 64 (2012), 2100-2110.  doi: 10.1016/j.camwa.2012.04.006.  Google Scholar

[25]

R. SubashiniK. JothimaniS. Saranya and C. Ravichandran, On the results of Hilfer fractional derivative with nonlocal conditions, International Journal of Pure and Applied Mathematics, 118 (2018), 277-289.   Google Scholar

[26]

J. A. Tenreiro Machado and M. Mata, Pseudo Phase Plane and Fractional Calculus modeling of western global economic downturn, Communications in Nonlinear Science and Numerical Simulation, 22 (2015), 396-406.  doi: 10.1016/j.cnsns.2014.08.032.  Google Scholar

[27]

J. A. Tenreiro Machado, Fractional dynamics in the Rayleigh's piston, Communications in Nonlinear Science and Numerical Simulation, 31 (2016), 76-82.   Google Scholar

[28]

N. ValliammalC. Ravichandran and J. H. Park, On the controllability of fractional neutral integrodifferential delay equations with nonlocal conditions, Mathematical Methods in the Applied Sciences, 40 (2017), 5044-5055.  doi: 10.1002/mma.4369.  Google Scholar

[29]

V. VijayakumarC. RavichandranR. Murugesu and J. J. Trujillo, Controllability results for a class of fractional semilinear integro-differential inclusions via resolvent operators, Applied Mathematics and Computation, 247 (2014), 152-161.  doi: 10.1016/j.amc.2014.08.080.  Google Scholar

[30]

J. R. Wang and Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Applied Mathematics and Computation, 266 (2015), 850-859.  doi: 10.1016/j.amc.2015.05.144.  Google Scholar

[31]

M. Yang and Q. Wang, Existence of mild solutions for a class of Hilfer fractional evolution equations With nonlocal conditions, Fractional Calculus and Applied Analysis, 20 (2017), 679-705.  doi: 10.1515/fca-2017-0036.  Google Scholar

[32]

Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014. doi: 10.1142/9069.  Google Scholar

[33]

Y. Zhou and F. Jiao, Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Analysis: Real World Applications, 11 (2010), 4465-4475.  doi: 10.1016/j.nonrwa.2010.05.029.  Google Scholar

[34]

Y. ZhouL. Zhang and X. H. Shen, Existence of mild solutions for fractional evolution equations, Journal of Integral Equations and Applications, 25 (2013), 557-585.  doi: 10.1216/JIE-2013-25-4-557.  Google Scholar

[1]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[2]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[3]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[4]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[5]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[6]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[7]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[8]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[9]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[10]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[11]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[12]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[13]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[14]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[15]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[16]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[17]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[18]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[19]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[20]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (439)
  • HTML views (852)
  • Cited by (11)

[Back to Top]