# American Institute of Mathematical Sciences

March  2020, 13(3): 957-974. doi: 10.3934/dcdss.2020056

## A fractional order HBV model with hospitalization

 1 Department of Mathematics, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan 2 Department of Mathematics, City University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan 3 Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad, Khyber Pakhtunkhwa, Pakistan

* Corresponding author: altafdir@gmail.com

Received  April 2018 Revised  June 2018 Published  March 2019

Hepatitis B is a viral infection that can cause both acute and chronic disease and mainly attacks the liver. The present paper describes the dynamics of HBV with hospitalization. Due to the fatal nature of this disease, it is necessary to formulate a new mathematical model in order to reduce the burden of HBV. Therefore, we formulate a new HBV model with fractional order derivative. The fractional order model is formulated in Caputo sense. Two equilibria for the model exist: the disease-free and the endemic equilibriums. It is shown, that the disease-free equilibrium is both locally and globally asymptotically stable if $\mathcal{R}_0<1$ for any $\alpha\in(0,1)$. The sensitivity analysis of the model parameters are calculated and their results are depicted. The numerical results for the stability of the endemic equilibrium are presented. The complex dynamics of the disease can be best described by using the fractional derivative and this is illustrated through many graphical results.

Citation: Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Taza Gul, Fawad Hussain. A fractional order HBV model with hospitalization. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 957-974. doi: 10.3934/dcdss.2020056
##### References:

show all references

##### References:
The effect of $\delta$ and $h_1$ on $\mathcal{R}_0$
Contour plot of $\delta$ and $h_1$
The effect of $\delta$ and $h_2$ on $\mathcal{R}_0$
Contour plot of $\delta$ and $h_2$
The effect of $\mu$ and $h_2$ on $\mathcal{R}_0$
Contour plot of $\mu$ and $h_2$
The effect of $\mu$ and $h_1$ on $\mathcal{R}_0$
Contour plot of $\mu$ and $h_1$
The plot shows the susceptible individuals when $\mathcal{R}_0 = 1.0248>1$ for different values of $\alpha$.
The plot shows the exposed individuals when $\mathcal{R}_0 = 1.0248>1$ for different values of $\alpha$.
The plot shows the acute individuals when $\mathcal{R}_0 = 1.0248>1$ for different values of $\alpha$.
The plot shows the carrier individuals when $\mathcal{R}_0 = 1.0248>1$ for different values of $\alpha$.
The plot shows the hospitalized individuals when $\mathcal{R}_0 = 1.0248>1$ for different values of $\alpha$.
The plot shows the recovered individuals when $\mathcal{R}_0 = 1.0248>1$ for different values of $\alpha$.
The plot shows the total number of infected individuals when $\mathcal{R}_0 = 1.0248>1$ for different values of $\alpha$
The plot shows the total number of infected individuals when $\mathcal{R}_0 = 1.0248>1$ for different values of $\alpha$ and $h_1$
The plot shows the total number of infected individuals when $\mathcal{R}_0 = 1.0248>1$ for different values of $\alpha$ and $h_2$.
Values of parameters used for numerical simulations
 parameters description of parameter Values $b$ Birth rate 0.4 $d$ Natural death rate 0.01 $h_1$ The acute individuals to be hospitalized 0.01 $h_2$ Flow rate from carrier class to the hospitalized class 0.01 $\beta$ The transmission coefficient 0.0002 $\delta$ Rate of flow from exposed to carrier 0.01 $d_A$ mortality rate due to acute infection 0.001 $d_C$ carrier individuals death rate 0.002 $\gamma$ the rate by which acute individuals move to carries class 0.01 $\xi$ The rate of recovery 0.02 $\psi$ Un-immunized children born to carrier mothers 0.2 $\mu$ Carriers infectiousness related to acute infection 0.2
 parameters description of parameter Values $b$ Birth rate 0.4 $d$ Natural death rate 0.01 $h_1$ The acute individuals to be hospitalized 0.01 $h_2$ Flow rate from carrier class to the hospitalized class 0.01 $\beta$ The transmission coefficient 0.0002 $\delta$ Rate of flow from exposed to carrier 0.01 $d_A$ mortality rate due to acute infection 0.001 $d_C$ carrier individuals death rate 0.002 $\gamma$ the rate by which acute individuals move to carries class 0.01 $\xi$ The rate of recovery 0.02 $\psi$ Un-immunized children born to carrier mothers 0.2 $\mu$ Carriers infectiousness related to acute infection 0.2
Sensitivity indices of $\mathcal{R}_0$ with respect to the model parameters
 Parameter Sensitivity index $\beta$ +0.7165 $\delta$ +0.5000 $\gamma$ +0.3680 $h_1$ -0.0455 $h_2$ -0.3739 $\mu$ +0.0161 $\psi$ +0.8064 $d_A$ -0.0454 $d_C$ -0.0748
 Parameter Sensitivity index $\beta$ +0.7165 $\delta$ +0.5000 $\gamma$ +0.3680 $h_1$ -0.0455 $h_2$ -0.3739 $\mu$ +0.0161 $\psi$ +0.8064 $d_A$ -0.0454 $d_C$ -0.0748
 [1] Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432 [2] Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269 [3] George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 [4] A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441 [5] Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466 [6] Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 [7] Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 [8] Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304 [9] Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457 [10] Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219 [11] Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331 [12] Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118 [13] Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319 [14] Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355 [15] Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275 [16] Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 [17] Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453 [18] Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106 [19] Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119 [20] Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

2019 Impact Factor: 1.233