# American Institute of Mathematical Sciences

• Previous Article
MHD natural convection boundary-layer flow over a semi-infinite heated plate with arbitrary inclination
• DCDS-S Home
• This Issue
• Next Article
A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative
March  2020, 13(3): 995-1006. doi: 10.3934/dcdss.2020058

## Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel

 1 Faculty of Science, Department of Mathematics-Computer Sciences, Necmettin Erbakan University, Konya, 42090, Turkey 2 Faculty of Sciences and Arts, Department of Mathematics, Balıkesir University, Balıkesir, 10145, Turkey

* Corresponding author: mehmetyavuz@erbakan.edu.tr

Received  August 2018 Revised  September 2018 Published  March 2019

In this manuscript, we have proposed a comparison based on newly defined fractional derivative operators which are called as Caputo-Fabrizio (CF) and Atangana-Baleanu (AB). In 2015, Caputo and Fabrizio established a new fractional operator by using exponential kernel. After one year, Atangana and Baleanu recommended a different-type fractional operator that uses the generalized Mittag-Leffler function (MLF). Many real-life problems can be modelled and can be solved by numerical-analytical solution methods which are derived with these operators. In this paper, we suggest an approximate solution method for PDEs of fractional order by using the mentioned operators. We consider the Laplace homotopy transformation method (LHTM) which is the combination of standard homotopy technique (SHT) and Laplace transformation method (LTM). In this study, we aim to demonstrate the effectiveness of the aforementioned method by comparing the solutions we have achieved with the exact solutions. Furthermore, by constructing the error analysis, we test the practicability and usefulness of the method.

Citation: Mehmet Yavuz, Necati Özdemir. Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 995-1006. doi: 10.3934/dcdss.2020058
##### References:
 [1] T. Abdeljawad and D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107, arXiv: 1607.00262. doi: 10.22436/jnsa.010.03.20.  Google Scholar [2] B. S. T. Alkahtani and A. Atangana, Controlling the wave movement on the surface of shallow water with the Caputo–Fabrizio derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 539-546.  doi: 10.1016/j.chaos.2016.03.012.  Google Scholar [3] B. S. T. Alkahtani and A. Atangana, Analysis of non-homogeneous heat model with new trend of derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 566-571.  doi: 10.1016/j.chaos.2016.03.027.  Google Scholar [4] B. S. T. Alkahtani, Chua's circuit model with Atangana–Baleanu derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 547-551.   Google Scholar [5] O. J. J. Alkahtani, Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model, Chaos, Solitons & Fractals, 89 (2016), 552-559.  doi: 10.1016/j.chaos.2016.03.026.  Google Scholar [6] R. T. Alqahtani, Atangana-Baleanu derivative with fractional order applied to the model of groundwater within an unconfined aquifer, Journal of Nonlinear Sciences and Applications, 9 (2016), 3647-3654.  doi: 10.22436/jnsa.009.06.17.  Google Scholar [7] F. A. M. N. Al-Salti and E. Karimov, Initial and boundary value problems for fractional differential equations involving Atangana-Baleanu derivative, preprint, arXiv: 1706.00740. Google Scholar [8] N. A. Asif, Z. Hammouch, M. B. Riaz and H. Bulut, Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, The European Physical Journal Plus, 133 (2018), 272. doi: 10.1140/epjp/i2018-12098-6.  Google Scholar [9] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 22 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar [10] A. Atangana and I. Koca, On the new fractional derivative and application to nonlinear Baggs and Freedman model, Journal of Nonlinear Sciences and Applications, 9 (2016), 2467-2480.  doi: 10.22436/jnsa.009.05.46.  Google Scholar [11] A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order, Chaos, Solitons & Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.  Google Scholar [12] A. Atangana and B. S. T. Alkahtani, New model of groundwater flowing within a confine aquifer: Application of Caputo-Fabrizio derivative, Arabian Journal of Geosciences, 9 (2016), 3647-3654.  doi: 10.22436/jnsa.009.06.17.  Google Scholar [13] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 1-13.   Google Scholar [14] M. Caputo, Linear models of dissipation whose Q is almost frequency independent I, Geophysical Journal International, 13 (1967), 529-539.  doi: 10.1111/j.1365-246X.1967.tb02303.x.  Google Scholar [15] J. F. Gómez-Aguilar, R. F. Escobar-Jiménez, M. G. López-López and V. M. Alvarado-Martínez, Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media, Journal of Electromagnetic Waves and Applications, 30 (2016), 1937-1952.  doi: 10.1080/09205071.2016.1225521.  Google Scholar [16] J. F. Gómez-Aguilar, V. F. Morales-Delgado, M. A. Taneco-Hernández, D. Baleanu, R. F. Escobar-Jiménez and M. M. Al Qurashi, Analytical solutions of the electrical RLC circuit via Liouville aputo operators with local and non-local kernels, Entropy, 18 (2016), 402. doi: 10.3390/e18080402.  Google Scholar [17] J. Hristov, Transient heat diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey's kernel to the Caputo-Fabrizio time-fractional derivative, Thermal Science, 20 (2016), 757-762.  doi: 10.2298/TSCI160112019H.  Google Scholar [18] J. Hristov, Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey's kernel and analytical solutions, Thermal Science, 21 (2017), 827-839.  doi: 10.2298/TSCI160229115H.  Google Scholar [19] I. Koca and A. Atangana, Solutions of Cattaneo-Hristov model of elastic heat diffusion with Caputo-Fabrizio and Atangana-Baleanu fractional derivatives, Thermal Science, 21 (2017), 2299-2305.  doi: 10.2298/TSCI160209103K.  Google Scholar [20] V. F. Morales-Delgado, J. F. Gómez-Aguilar, H. Yépez-Martínez, D. Baleanu, R. F. Escobar-Jimenez and V. H. Olivares-Peregrino, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Advances in Difference Equations, 2016 (2016), Paper No. 164, 17 pp. doi: 10.1186/s13662-016-0891-6.  Google Scholar [21] Z. Odibat and S. Momani, The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics, Computers & Mathematics with Applications, 58 (2009), 2199-2208.  doi: 10.1016/j.camwa.2009.03.009.  Google Scholar [22] N. A. Sheikh, F. Ali, M. Saqib, I. Khan, S. A. A. Jan, A. S. Alshomrani and M. S. Alghamdi, Comparison and analysis of the Atangana–Baleanu and Caputo–Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction, Results in Physics, 7 (2017), 789-800.  doi: 10.1016/j.rinp.2017.01.025.  Google Scholar [23] N. A. Sheikh, F. Ali, M. Saqib, I. Khan and S. A. A. Jan, A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid, The European Physical Journal Plus, 132 (2017), 54. doi: 10.1140/epjp/i2017-11326-y.  Google Scholar [24] J. Singh, D. Kumar, Z. Hammouch and A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Applied Mathematics and Computation, 316 (2018), 504-515.  doi: 10.1016/j.amc.2017.08.048.  Google Scholar [25] M. Yavuz and N. Ozdemir, European vanilla option pricing model of fractional order without singular kernel, Fractal and Fractional, 2 (2018), 3. doi: 10.3390/fractalfract2010003.  Google Scholar [26] M. Yavuz, N. Ozdemir and H. M. Baskonus, Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel, The European Physical Journal Plus, 133 (2018), 215. doi: 10.1140/epjp/i2018-12051-9.  Google Scholar

show all references

##### References:
 [1] T. Abdeljawad and D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107, arXiv: 1607.00262. doi: 10.22436/jnsa.010.03.20.  Google Scholar [2] B. S. T. Alkahtani and A. Atangana, Controlling the wave movement on the surface of shallow water with the Caputo–Fabrizio derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 539-546.  doi: 10.1016/j.chaos.2016.03.012.  Google Scholar [3] B. S. T. Alkahtani and A. Atangana, Analysis of non-homogeneous heat model with new trend of derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 566-571.  doi: 10.1016/j.chaos.2016.03.027.  Google Scholar [4] B. S. T. Alkahtani, Chua's circuit model with Atangana–Baleanu derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 547-551.   Google Scholar [5] O. J. J. Alkahtani, Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model, Chaos, Solitons & Fractals, 89 (2016), 552-559.  doi: 10.1016/j.chaos.2016.03.026.  Google Scholar [6] R. T. Alqahtani, Atangana-Baleanu derivative with fractional order applied to the model of groundwater within an unconfined aquifer, Journal of Nonlinear Sciences and Applications, 9 (2016), 3647-3654.  doi: 10.22436/jnsa.009.06.17.  Google Scholar [7] F. A. M. N. Al-Salti and E. Karimov, Initial and boundary value problems for fractional differential equations involving Atangana-Baleanu derivative, preprint, arXiv: 1706.00740. Google Scholar [8] N. A. Asif, Z. Hammouch, M. B. Riaz and H. Bulut, Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, The European Physical Journal Plus, 133 (2018), 272. doi: 10.1140/epjp/i2018-12098-6.  Google Scholar [9] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 22 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar [10] A. Atangana and I. Koca, On the new fractional derivative and application to nonlinear Baggs and Freedman model, Journal of Nonlinear Sciences and Applications, 9 (2016), 2467-2480.  doi: 10.22436/jnsa.009.05.46.  Google Scholar [11] A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order, Chaos, Solitons & Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.  Google Scholar [12] A. Atangana and B. S. T. Alkahtani, New model of groundwater flowing within a confine aquifer: Application of Caputo-Fabrizio derivative, Arabian Journal of Geosciences, 9 (2016), 3647-3654.  doi: 10.22436/jnsa.009.06.17.  Google Scholar [13] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 1-13.   Google Scholar [14] M. Caputo, Linear models of dissipation whose Q is almost frequency independent I, Geophysical Journal International, 13 (1967), 529-539.  doi: 10.1111/j.1365-246X.1967.tb02303.x.  Google Scholar [15] J. F. Gómez-Aguilar, R. F. Escobar-Jiménez, M. G. López-López and V. M. Alvarado-Martínez, Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media, Journal of Electromagnetic Waves and Applications, 30 (2016), 1937-1952.  doi: 10.1080/09205071.2016.1225521.  Google Scholar [16] J. F. Gómez-Aguilar, V. F. Morales-Delgado, M. A. Taneco-Hernández, D. Baleanu, R. F. Escobar-Jiménez and M. M. Al Qurashi, Analytical solutions of the electrical RLC circuit via Liouville aputo operators with local and non-local kernels, Entropy, 18 (2016), 402. doi: 10.3390/e18080402.  Google Scholar [17] J. Hristov, Transient heat diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey's kernel to the Caputo-Fabrizio time-fractional derivative, Thermal Science, 20 (2016), 757-762.  doi: 10.2298/TSCI160112019H.  Google Scholar [18] J. Hristov, Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey's kernel and analytical solutions, Thermal Science, 21 (2017), 827-839.  doi: 10.2298/TSCI160229115H.  Google Scholar [19] I. Koca and A. Atangana, Solutions of Cattaneo-Hristov model of elastic heat diffusion with Caputo-Fabrizio and Atangana-Baleanu fractional derivatives, Thermal Science, 21 (2017), 2299-2305.  doi: 10.2298/TSCI160209103K.  Google Scholar [20] V. F. Morales-Delgado, J. F. Gómez-Aguilar, H. Yépez-Martínez, D. Baleanu, R. F. Escobar-Jimenez and V. H. Olivares-Peregrino, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Advances in Difference Equations, 2016 (2016), Paper No. 164, 17 pp. doi: 10.1186/s13662-016-0891-6.  Google Scholar [21] Z. Odibat and S. Momani, The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics, Computers & Mathematics with Applications, 58 (2009), 2199-2208.  doi: 10.1016/j.camwa.2009.03.009.  Google Scholar [22] N. A. Sheikh, F. Ali, M. Saqib, I. Khan, S. A. A. Jan, A. S. Alshomrani and M. S. Alghamdi, Comparison and analysis of the Atangana–Baleanu and Caputo–Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction, Results in Physics, 7 (2017), 789-800.  doi: 10.1016/j.rinp.2017.01.025.  Google Scholar [23] N. A. Sheikh, F. Ali, M. Saqib, I. Khan and S. A. A. Jan, A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid, The European Physical Journal Plus, 132 (2017), 54. doi: 10.1140/epjp/i2017-11326-y.  Google Scholar [24] J. Singh, D. Kumar, Z. Hammouch and A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Applied Mathematics and Computation, 316 (2018), 504-515.  doi: 10.1016/j.amc.2017.08.048.  Google Scholar [25] M. Yavuz and N. Ozdemir, European vanilla option pricing model of fractional order without singular kernel, Fractal and Fractional, 2 (2018), 3. doi: 10.3390/fractalfract2010003.  Google Scholar [26] M. Yavuz, N. Ozdemir and H. M. Baskonus, Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel, The European Physical Journal Plus, 133 (2018), 215. doi: 10.1140/epjp/i2018-12051-9.  Google Scholar
The solution function of (29) in the CFO sense for $x = 0.5$ (left) and $x = 1$ (right)
The solution function of (29) in the ABO sense for $x = 0.5$ (left) and $x = 1$ (right)
The solution of Eq. (37) in the CFO sense for various values of $\alpha .$
The solution function of (45) in the ABO sense for various values of $\alpha = 0.7$ (left) and $\alpha = 0.9$ (right)
Inaccuracy rates (%) of the mentioned method
 [1] Muhammad Bilal Riaz, Syed Tauseef Saeed. Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3719-3746. doi: 10.3934/dcdss.2020430 [2] Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 937-956. doi: 10.3934/dcdss.2020055 [3] Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057 [4] Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031 [5] Kashif Ali Abro, Ilyas Khan. MHD flow of fractional Newtonian fluid embedded in a porous medium via Atangana-Baleanu fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 377-387. doi: 10.3934/dcdss.2020021 [6] Editorial Office. WITHDRAWN: Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2020173 [7] S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3747-3761. doi: 10.3934/dcdss.2020435 [8] Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014 [9] Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317 [10] Amina-Aicha Khennaoui, A. Othman Almatroud, Adel Ouannas, M. Mossa Al-sawalha, Giuseppe Grassi, Viet-Thanh Pham. The effect of caputo fractional difference operator on a novel game theory model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4549-4565. doi: 10.3934/dcdsb.2020302 [11] Fırat Evirgen, Sümeyra Uçar, Necati Özdemir, Zakia Hammouch. System response of an alcoholism model under the effect of immigration via non-singular kernel derivative. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2199-2212. doi: 10.3934/dcdss.2020145 [12] Krunal B. Kachhia, Abdon Atangana. Electromagnetic waves described by a fractional derivative of variable and constant order with non singular kernel. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2357-2371. doi: 10.3934/dcdss.2020172 [13] Yuxia Guo, Jianjun Nie. Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6873-6898. doi: 10.3934/dcds.2016099 [14] Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3387-3399. doi: 10.3934/dcdss.2021017 [15] M. M. El-Dessoky, Muhammad Altaf Khan. Application of Caputo-Fabrizio derivative to a cancer model with unknown parameters. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3557-3575. doi: 10.3934/dcdss.2020429 [16] Badr Saad T. Alkahtani, Ilknur Koca. A new numerical scheme applied on re-visited nonlinear model of predator-prey based on derivative with non-local and non-singular kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 429-442. doi: 10.3934/dcdss.2020024 [17] G. M. Bahaa. Generalized variational calculus in terms of multi-parameters involving Atangana-Baleanu's derivatives and application. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 485-501. doi: 10.3934/dcdss.2020027 [18] Ravi Shanker Dubey, Pranay Goswami. Mathematical model of diabetes and its complication involving fractional operator without singular kernal. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2151-2161. doi: 10.3934/dcdss.2020144 [19] Manli Song, Jinggang Tan. Hardy inequalities for the fractional powers of the Grushin operator. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4699-4726. doi: 10.3934/cpaa.2020192 [20] Shakir Sh. Yusubov, Elimhan N. Mahmudov. Optimality conditions of singular controls for systems with Caputo fractional derivatives. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021182

2020 Impact Factor: 2.425

## Metrics

• PDF downloads (1647)
• HTML views (691)
• Cited by (14)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]