• Previous Article
    A cyclic system with delay and its characteristic equation
  • DCDS-S Home
  • This Issue
  • Next Article
    Joint identification via deconvolution of the flux and energy relaxation kernels of the Gurtin-Pipkin model in thermodynamics with memory
doi: 10.3934/dcdss.2020064

Variational discretization of thermodynamical simple systems on Lie groups

1. 

LMD - IPSL, École Normale Supérieure de Paris - PSL, 24 rue Lhomond, 75005 Paris, France

2. 

CNRS - LMD - IPSL, École Normale Supérieure de Paris - PSL, 24 rue Lhomond, 75005 Paris, France

* Corresponding author

Received  December 2017 Revised  August 2018 Published  April 2019

Fund Project: The authors are supported by the ANR project GEOMFLUID (ANR-14-CE23-0002)

This paper presents the continuous and discrete variational formulations of simple thermodynamical systems whose configuration space is a (finite dimensional) Lie group. We follow the variational approach to nonequilibrium thermodynamics developed in [12,13], as well as its discrete counterpart whose foundations have been laid in [14]. In a first part, starting from this variational formalism on the Lie group, we perform an Euler-Poincaré reduction in order to obtain the reduced evolution equations of the system on the Lie algebra of the configuration space. We obtain as corollaries the energy balance and a Kelvin-Noether theorem. In a second part, a compatible discretization is developed resulting in discrete evolution equations that take place on the Lie group. Then, these discrete equations are transported onto the Lie algebra of the configuration space with the help of a group difference map. Finally we illustrate our framework with a heavy top immersed in a viscous fluid modeled by a Stokes flow and proceed with a numerical simulation.

Citation: Benjamin Couéraud, François Gay-Balmaz. Variational discretization of thermodynamical simple systems on Lie groups. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020064
References:
[1]

W. Bauer and F. Gay-Balmaz, Towards a variational discretization of compressible fluids: The rotating shallow water equations, J. Comp. Dyn, accepted, https://arXiv.org/pdf/1711.10617.pdf doi: 10.3934/jcd.2019001. Google Scholar

[2]

A. BlochP. S. KrishnaprasadJ. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and double bracket dissipation, Com. Math. Phys., 175 (1996), 1-42. doi: 10.1007/BF02101622. Google Scholar

[3]

A. I. Bobenko and Y. S. Suris, Discrete Lagrangian reduction, discrete Euler-Poincaré equations, and semidirect products, Lett. Math. Phys., 49 (1999), 79-93. doi: 10.1023/A:1007654605901. Google Scholar

[4]

N. Bou-Rabee, Hamilton-Pontryagin Integrators on Lie Groups, Ph.D thesis, California Institute of Technology, 2007, http://resolver.caltech.edu/CaltechETD:etd-06052007-153115.Google Scholar

[5]

N. Bou-Rabee and J. E. Marsden, Hamilton-Pontryagin integrators on Lie groups Part Ⅰ: Introduction and structure-preserving properties, Foundations of Computational Mathematics, 9 (2009), 197-219. doi: 10.1007/s10208-008-9030-4. Google Scholar

[6]

H. Brenner and J. Happel, Low Reynolds Number Hydrodynamics, Mechanics of fluids and transport processes, 1, Martinus Nijhoff publishers, 1983.Google Scholar

[7]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages, Memoirs of the AMS, 152 (2001), x+108 pp. doi: 10.1090/memo/0722. Google Scholar

[8]

M. DesbrunE. GawlikF. Gay-Balmaz and V. Zeitlin, Variational discretization for rotating stratified fluids, Disc. Cont. Dyn. Syst. Series A, 34 (2014), 477-509. doi: 10.3934/dcds.2014.34.477. Google Scholar

[9]

E. GawlikP. MullenD. PavlovJ. E. Marsden and M. Desbrun, Geometric, variational discretization of continuum theories, Physica D, 240 (2011), 1724-1760. doi: 10.1016/j.physd.2011.07.011. Google Scholar

[10]

F. Gay-Balmaz and T. S. Ratiu, The geometric structure of complex fluids, Adv. Appl. Math., 42 (2009), 176-275. doi: 10.1016/j.aam.2008.06.002. Google Scholar

[11]

F. Gay-Balmaz and C. Tronci, Reduction theory for symmetry breaking with applications to nematic systems, Physica D: Nonlinear Phenomena, 239 (2010), 1929-1947. doi: 10.1016/j.physd.2010.07.002. Google Scholar

[12]

F. Gay-Balmaz and H. Yoshimura, A Lagrangian variational formulation for nonequilibrium thermodynamics. Part Ⅰ: Discrete systems, J. Geom. Phys., 111 (2017), 169-193. doi: 10.1016/j.geomphys.2016.08.018. Google Scholar

[13]

F. Gay-Balmaz and H. Yoshimura, A Lagrangian variational formulation for nonequilibrium thermodynamics. Part Ⅱ: Continuum systems, J. Geom. Phys., 111 (2017), 194-212. doi: 10.1016/j.geomphys.2016.08.019. Google Scholar

[14]

F. Gay-Balmaz and H. Yoshimura, Variational discretization for the nonequilibrium thermodynamics of simple systems, Nonlinearity, 31 (2018), 1673-1705. doi: 10.1088/1361-6544/aaa10e. Google Scholar

[15]

F. Gay-Balmaz and H. Yoshimura, A variational formulation of nonequilibrium thermodynamics for discrete open systems with mass and heat transfer, Entropy, 20 (2018), Paper No. 163, 26 pp. doi: 10.3390/e20030163. Google Scholar

[16]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Springer Series in Computational Mathematics, 31, Springer, 2006. Google Scholar

[17]

D. D. HolmJ. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81. doi: 10.1006/aima.1998.1721. Google Scholar

[18]

D. D. Holm, T. Schmah and C. Stoica, Geometric Mechanics and Symmetry, From Finite to Infinite Dimensions, Oxford Texts in Applied and Engineering Mathematics, 12, Oxford University Press, Oxford, 2009. Google Scholar

[19]

C. KaneJ. E. Marsden and M. Ortiz, Symplectic-energy-momentum preserving variational integrators, J. Math. Phys., 40 (1999), 3353-3371. doi: 10.1063/1.532892. Google Scholar

[20]

S. Kim and S. Karrila, Microhydrodynamics: Principles and Selected Applications, Dover, 1991.Google Scholar

[21]

H. Lamb, Hydrodynamics, 6th revised edition, Cambridge University Press, Cambridge, 1993. Google Scholar

[22]

M. de León and D. Martín De Diego, Variational integrators and time-dependent Lagrangian systems, Rep. Math. Phys., 49 (2002), 183-192. doi: 10.1016/S0034-4877(02)80017-9. Google Scholar

[23]

R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems, J. Nonlin. Sci., 16 (2006), 283-328. doi: 10.1007/s00332-005-0698-1. Google Scholar

[24]

J. E. MarsdenS. Pekarsky and S. Shkoller, Discrete Euler-Poincaré and Lie-Poisson equations, Nonlinearity, 12 (1999), 1647-1662. doi: 10.1088/0951-7715/12/6/314. Google Scholar

[25]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, A Basic Exposition of Classical Mechanical Systems, Second edition. Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1999. doi: 10.1007/978-0-387-21792-5. Google Scholar

[26]

J. E. Marsden and J. Scheurle, Lagrangian reduction and the double spherical pendulum, ZAMP, 44 (1993), 17-43. doi: 10.1007/BF00914351. Google Scholar

[27]

J. E. Marsden and J. Scheurle, The reduced Euler-Lagrange equations, Fields Institute Comm., 1 (1993), 139-164. Google Scholar

[28]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514. doi: 10.1017/S096249290100006X. Google Scholar

[29]

D. PavlovP. MullenY. TongE. KansoJ. E. Marsden and M. Desbrun, Structure-preserving discretization of incompressible fluids, Physica D: Nonlinear Phenomena, 240 (2011), 443-458. doi: 10.1016/j.physd.2010.10.012. Google Scholar

[30]

A.-T. Petit and P.-L. Dulon, Recherches sur quelques points importants de la théorie de la chaleur, Annales de Chimie et de Physique, 10 (1819), 395-413. Google Scholar

[31]

R. W. Sharpe, Differential geometry, Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, 166, Springer-Verlag, New York, 1997. Google Scholar

[32]

E. C. G. Stueckelberg and P. B. Scheurer, Thermocinétique Phénoménologique Galiléenne, Birkhäuser, 1974. Google Scholar

[33]

V. Zeitlin, Finite-mode analogues of 2D ideal hydrodynamics: Coadjoint orbits and local canonical structure, Physica D, 49 (1991), 353-362. doi: 10.1016/0167-2789(91)90152-Y. Google Scholar

show all references

References:
[1]

W. Bauer and F. Gay-Balmaz, Towards a variational discretization of compressible fluids: The rotating shallow water equations, J. Comp. Dyn, accepted, https://arXiv.org/pdf/1711.10617.pdf doi: 10.3934/jcd.2019001. Google Scholar

[2]

A. BlochP. S. KrishnaprasadJ. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and double bracket dissipation, Com. Math. Phys., 175 (1996), 1-42. doi: 10.1007/BF02101622. Google Scholar

[3]

A. I. Bobenko and Y. S. Suris, Discrete Lagrangian reduction, discrete Euler-Poincaré equations, and semidirect products, Lett. Math. Phys., 49 (1999), 79-93. doi: 10.1023/A:1007654605901. Google Scholar

[4]

N. Bou-Rabee, Hamilton-Pontryagin Integrators on Lie Groups, Ph.D thesis, California Institute of Technology, 2007, http://resolver.caltech.edu/CaltechETD:etd-06052007-153115.Google Scholar

[5]

N. Bou-Rabee and J. E. Marsden, Hamilton-Pontryagin integrators on Lie groups Part Ⅰ: Introduction and structure-preserving properties, Foundations of Computational Mathematics, 9 (2009), 197-219. doi: 10.1007/s10208-008-9030-4. Google Scholar

[6]

H. Brenner and J. Happel, Low Reynolds Number Hydrodynamics, Mechanics of fluids and transport processes, 1, Martinus Nijhoff publishers, 1983.Google Scholar

[7]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages, Memoirs of the AMS, 152 (2001), x+108 pp. doi: 10.1090/memo/0722. Google Scholar

[8]

M. DesbrunE. GawlikF. Gay-Balmaz and V. Zeitlin, Variational discretization for rotating stratified fluids, Disc. Cont. Dyn. Syst. Series A, 34 (2014), 477-509. doi: 10.3934/dcds.2014.34.477. Google Scholar

[9]

E. GawlikP. MullenD. PavlovJ. E. Marsden and M. Desbrun, Geometric, variational discretization of continuum theories, Physica D, 240 (2011), 1724-1760. doi: 10.1016/j.physd.2011.07.011. Google Scholar

[10]

F. Gay-Balmaz and T. S. Ratiu, The geometric structure of complex fluids, Adv. Appl. Math., 42 (2009), 176-275. doi: 10.1016/j.aam.2008.06.002. Google Scholar

[11]

F. Gay-Balmaz and C. Tronci, Reduction theory for symmetry breaking with applications to nematic systems, Physica D: Nonlinear Phenomena, 239 (2010), 1929-1947. doi: 10.1016/j.physd.2010.07.002. Google Scholar

[12]

F. Gay-Balmaz and H. Yoshimura, A Lagrangian variational formulation for nonequilibrium thermodynamics. Part Ⅰ: Discrete systems, J. Geom. Phys., 111 (2017), 169-193. doi: 10.1016/j.geomphys.2016.08.018. Google Scholar

[13]

F. Gay-Balmaz and H. Yoshimura, A Lagrangian variational formulation for nonequilibrium thermodynamics. Part Ⅱ: Continuum systems, J. Geom. Phys., 111 (2017), 194-212. doi: 10.1016/j.geomphys.2016.08.019. Google Scholar

[14]

F. Gay-Balmaz and H. Yoshimura, Variational discretization for the nonequilibrium thermodynamics of simple systems, Nonlinearity, 31 (2018), 1673-1705. doi: 10.1088/1361-6544/aaa10e. Google Scholar

[15]

F. Gay-Balmaz and H. Yoshimura, A variational formulation of nonequilibrium thermodynamics for discrete open systems with mass and heat transfer, Entropy, 20 (2018), Paper No. 163, 26 pp. doi: 10.3390/e20030163. Google Scholar

[16]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Springer Series in Computational Mathematics, 31, Springer, 2006. Google Scholar

[17]

D. D. HolmJ. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81. doi: 10.1006/aima.1998.1721. Google Scholar

[18]

D. D. Holm, T. Schmah and C. Stoica, Geometric Mechanics and Symmetry, From Finite to Infinite Dimensions, Oxford Texts in Applied and Engineering Mathematics, 12, Oxford University Press, Oxford, 2009. Google Scholar

[19]

C. KaneJ. E. Marsden and M. Ortiz, Symplectic-energy-momentum preserving variational integrators, J. Math. Phys., 40 (1999), 3353-3371. doi: 10.1063/1.532892. Google Scholar

[20]

S. Kim and S. Karrila, Microhydrodynamics: Principles and Selected Applications, Dover, 1991.Google Scholar

[21]

H. Lamb, Hydrodynamics, 6th revised edition, Cambridge University Press, Cambridge, 1993. Google Scholar

[22]

M. de León and D. Martín De Diego, Variational integrators and time-dependent Lagrangian systems, Rep. Math. Phys., 49 (2002), 183-192. doi: 10.1016/S0034-4877(02)80017-9. Google Scholar

[23]

R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems, J. Nonlin. Sci., 16 (2006), 283-328. doi: 10.1007/s00332-005-0698-1. Google Scholar

[24]

J. E. MarsdenS. Pekarsky and S. Shkoller, Discrete Euler-Poincaré and Lie-Poisson equations, Nonlinearity, 12 (1999), 1647-1662. doi: 10.1088/0951-7715/12/6/314. Google Scholar

[25]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, A Basic Exposition of Classical Mechanical Systems, Second edition. Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1999. doi: 10.1007/978-0-387-21792-5. Google Scholar

[26]

J. E. Marsden and J. Scheurle, Lagrangian reduction and the double spherical pendulum, ZAMP, 44 (1993), 17-43. doi: 10.1007/BF00914351. Google Scholar

[27]

J. E. Marsden and J. Scheurle, The reduced Euler-Lagrange equations, Fields Institute Comm., 1 (1993), 139-164. Google Scholar

[28]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514. doi: 10.1017/S096249290100006X. Google Scholar

[29]

D. PavlovP. MullenY. TongE. KansoJ. E. Marsden and M. Desbrun, Structure-preserving discretization of incompressible fluids, Physica D: Nonlinear Phenomena, 240 (2011), 443-458. doi: 10.1016/j.physd.2010.10.012. Google Scholar

[30]

A.-T. Petit and P.-L. Dulon, Recherches sur quelques points importants de la théorie de la chaleur, Annales de Chimie et de Physique, 10 (1819), 395-413. Google Scholar

[31]

R. W. Sharpe, Differential geometry, Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, 166, Springer-Verlag, New York, 1997. Google Scholar

[32]

E. C. G. Stueckelberg and P. B. Scheurer, Thermocinétique Phénoménologique Galiléenne, Birkhäuser, 1974. Google Scholar

[33]

V. Zeitlin, Finite-mode analogues of 2D ideal hydrodynamics: Coadjoint orbits and local canonical structure, Physica D, 49 (1991), 353-362. doi: 10.1016/0167-2789(91)90152-Y. Google Scholar

Figure 1.  The trajectory of the center of mass of the heavy top
Figure 2.  The different energies of the system
Figure 3.  The relative total energy of the system. While the Runge-Kutta 2 method yields an increase in the total energy, our variational integrator displays the usual oscillatory behaviour until the system stops moving, even with a large time step
[1]

Pedro L. García, Antonio Fernández, César Rodrigo. Variational integrators for discrete Lagrange problems. Journal of Geometric Mechanics, 2010, 2 (4) : 343-374. doi: 10.3934/jgm.2010.2.343

[2]

Matteo Focardi, Paolo Maria Mariano. Discrete dynamics of complex bodies with substructural dissipation: Variational integrators and convergence. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 109-130. doi: 10.3934/dcdsb.2009.11.109

[3]

Yuri B. Suris. Variational formulation of commuting Hamiltonian flows: Multi-time Lagrangian 1-forms. Journal of Geometric Mechanics, 2013, 5 (3) : 365-379. doi: 10.3934/jgm.2013.5.365

[4]

Oscar E. Fernandez, Anthony M. Bloch, P. J. Olver. Variational Integrators for Hamiltonizable Nonholonomic Systems. Journal of Geometric Mechanics, 2012, 4 (2) : 137-163. doi: 10.3934/jgm.2012.4.137

[5]

George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations & Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557

[6]

Leonardo Colombo, Fernando Jiménez, David Martín de Diego. Variational integrators for mechanical control systems with symmetries. Journal of Computational Dynamics, 2015, 2 (2) : 193-225. doi: 10.3934/jcd.2015003

[7]

Mathieu Desbrun, Evan S. Gawlik, François Gay-Balmaz, Vladimir Zeitlin. Variational discretization for rotating stratified fluids. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 477-509. doi: 10.3934/dcds.2014.34.477

[8]

Philipp Fuchs, Ansgar Jüngel, Max von Renesse. On the Lagrangian structure of quantum fluid models. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1375-1396. doi: 10.3934/dcds.2014.34.1375

[9]

Cédric M. Campos, Sina Ober-Blöbaum, Emmanuel Trélat. High order variational integrators in the optimal control of mechanical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4193-4223. doi: 10.3934/dcds.2015.35.4193

[10]

Mats Vermeeren. Modified equations for variational integrators applied to Lagrangians linear in velocities. Journal of Geometric Mechanics, 2019, 11 (1) : 1-22. doi: 10.3934/jgm.2019001

[11]

Zoltán Horváth, Yunfei Song, Tamás Terlaky. Steplength thresholds for invariance preserving of discretization methods of dynamical systems on a polyhedron. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2997-3013. doi: 10.3934/dcds.2015.35.2997

[12]

Thomas Y. Hou, Danping Yang, Hongyu Ran. Multiscale analysis in Lagrangian formulation for the 2-D incompressible Euler equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1153-1186. doi: 10.3934/dcds.2005.13.1153

[13]

Huyi Hu, Miaohua Jiang, Yunping Jiang. Infimum of the metric entropy of volume preserving Anosov systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4767-4783. doi: 10.3934/dcds.2017205

[14]

Sergio Grillo, Marcela Zuccalli. Variational reduction of Lagrangian systems with general constraints. Journal of Geometric Mechanics, 2012, 4 (1) : 49-88. doi: 10.3934/jgm.2012.4.49

[15]

Kurusch Ebrahimi-Fard, Dominique Manchon. The tridendriform structure of a discrete Magnus expansion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1021-1040. doi: 10.3934/dcds.2014.34.1021

[16]

Burcu Özçam, Hao Cheng. A discretization based smoothing method for solving semi-infinite variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 219-233. doi: 10.3934/jimo.2005.1.219

[17]

Anthony Bloch, Leonardo Colombo, Fernando Jiménez. The variational discretization of the constrained higher-order Lagrange-Poincaré equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 309-344. doi: 10.3934/dcds.2019013

[18]

Werner Bauer, François Gay-Balmaz. Towards a geometric variational discretization of compressible fluids: The rotating shallow water equations. Journal of Computational Dynamics, 2019, 6 (1) : 1-37. doi: 10.3934/jcd.2019001

[19]

Manh Hong Duong, Hoang Minh Tran. On the fundamental solution and a variational formulation for a degenerate diffusion of Kolmogorov type. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3407-3438. doi: 10.3934/dcds.2018146

[20]

Xiaojun Chen, Guihua Lin. CVaR-based formulation and approximation method for stochastic variational inequalities. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 35-48. doi: 10.3934/naco.2011.1.35

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (19)
  • HTML views (377)
  • Cited by (0)

Other articles
by authors

[Back to Top]