
-
Previous Article
Stabilized rapid oscillations in a delay equation: Feedback control by a small resonant delay
- DCDS-S Home
- This Issue
-
Next Article
On Lie algebra actions
Almost all 3-body relative equilibria on $ \mathbb S^2 $ and $ \mathbb H^2 $ are inclined
1. | Yale-NUS College, National University of Singapore, Republic of Singapore |
2. | School of Mathematical Sciences, University of Science and Technology of China, Hefei, China |
We answer here a question posed by F. Diacu in 2012 that asked whether there exist relative equilibria on $ \mathbb S^2 $ and $ \mathbb H^2 $ that move in a plane non-perpendicular to the rotation axis. For 3-body non-geodesic ordinary central configurations on $ \mathbb S^2 $ and $ \mathbb H^2 $, we find all relative equilibria that move in a plane perpendicular to the rotation axis. We also show that the set of shapes of 3-body non-geodesic ordinary central configurations on $ \mathbb S^2 $ and $ \mathbb H^2 $ is a 3-dimensional manifold. Then we conclude that almost all 3-body relative equilibria move in planes non-perpendicular to the rotation axis.
References:
[1] |
F. Diacu,
On the singularities of the curved $n$-body problem, Trans. Amer. Math. Soc., 363 (2011), 2249-2264.
doi: 10.1090/S0002-9947-2010-05251-1. |
[2] |
F. Diacu,
Polygonal homographic orbits of the curved $n$-body problem, Trans. Amer. Math. Soc., 364 (2012), 2783-2802.
doi: 10.1090/S0002-9947-2011-05558-3. |
[3] |
F. Diacu, Relative Equilibria of the Curved N-Body Problem, Atlantis Studies in Dynamical Systems, Atlantis Press, Paris, 2012.
doi: 10.2991/978-94-91216-68-8.![]() ![]() |
[4] |
F. Diacu, Relative equilibria in the 3-dimensional curved $n$-body problem, Mem. Amer. Math. Soc., 228 (2014), ⅵ+80 pp. |
[5] |
F. Diacu, Bifurcations of the Lagrangian orbits from the classical to the curved 3-body problem, J. Math. Phys., 57 (2016), 112701, 20pp.
doi: 10.1063/1.4967443. |
[6] |
F. Diacu,
The classical N-body problem in the context of curved space, Canad. J. Math., 69 (2017), 790-806.
doi: 10.4153/CJM-2016-041-2. |
[7] |
F. Diacu and S. Kordlou,
Rotopulsators of the curved $N$-body problem, J. Differential Equations, 255 (2013), 2709-2750.
doi: 10.1016/j.jde.2013.07.009. |
[8] |
F. Diacu, R. Martínez, E. Pérez-Chavela and C. Simó,
On the stability of tetrahedral relative equilibria in the positively curved 4-body problem, Phys. D, 256/257 (2013), 21-35.
doi: 10.1016/j.physd.2013.04.007. |
[9] |
F. Diacu and E. Pérez-Chavela,
Homographic solutions of the curved 3-body problem, J. Differential Equations, 250 (2011), 340-366.
doi: 10.1016/j.jde.2010.08.011. |
[10] |
F. Diacu and S. Popa, All the Lagrangian relative equilibria of the curved 3-body problem have equal masses, J. Math. Phys., 55 (2014), 112701, 9pp.
doi: 10.1063/1.4900833. |
[11] |
F. Diacu, J. M. Sánchez-Cerritos and S. Zhu,
Stability of fixed Points and associated relative equilibria of the 3-body problem on $ {\Bbb {S}}^1 $ and $ {\Bbb {S}}^2 $, J. Dynam. Differential Equations, 30 (2018), 209-225.
doi: 10.1007/s10884-016-9550-6. |
[12] |
F. Diacu, C. Stoica and S. Zhu, Central configurations of the curved N-body problem, J. Nonlinear Sci., 28 (2018), 1999–2046, arXiv: 1603.03342.
doi: 10.1007/s00332-018-9473-y. |
[13] |
M. W. Hirsch, Differential Topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976. |
[14] |
A. A. Kilin,
Libration points in spaces S2 and L2, Regul. Chaotic Dyn., 4 (1999), 91-103.
doi: 10.1070/rd1999v004n01ABEH000101. |
[15] |
V. V. Kozlov and A. O. Harin,
Kepler's problem in constant curvature spaces, Celestial Mech. Dynam. Astronom., 54 (1992), 393-399.
doi: 10.1007/BF00049149. |
[16] |
J. Llibre, R. Moeckel and C. Simó, Central Configurations, Periodic Orbits, and Hamiltonian Systems, Advanced Courses in Mathematics. CRM Barcelona, Lecture notes given at the Centre de Recerca Matemàtica (CRM), Barcelona, January 27–31, 2014, Edited by Montserrat Corbera, Josep Maria Cors and Enrique Ponce, Birkhäuser Springer, Basel, 2015.
doi: 10.1007/978-3-0348-0933-7. |
[17] |
D. G. Saari,
On the role and the properties of n-body central configurations, Celestial Mech., 21 (1980), 9-20.
doi: 10.1007/BF01230241. |
[18] |
E. Schrödinger, A method for determining quantum-mechanical eigenvalues and eigenfunctions, Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 46 (1940), 9-16. Google Scholar |
[19] |
A. V. Shchepetilov,
Nonintegrability of the two-body problem in constant curvature spaces, J. Phys. A, 39 (2006), 5787-5806.
|
[20] |
A. V. Shchepetilov, Calculus and Mechanics on Two-Point Homogeneous Riemannian Spaces, Lecture Notes in Physics, Springer, Berlin, 2006. |
[21] |
S. Smale,
Topology and mechanics. Ⅱ. The planar n-body problem, Invent. Math., 11 (1970), 45-64.
doi: 10.1007/BF01389805. |
[22] |
S. Smale, Problems on the nature of relative equilibria in celestial mechanics, in Manifolds –Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197, Springer, Berlin, (1971), 194–198. |
[23] |
A. Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Mathematical Series, ⅴ. 5, Princeton University Press, Princeton, N. J., 1941.
![]() |
[24] |
S. Zhu,
Eulerian relative equilibria of the curved 3-body problems in S2, Proc. Amer. Math. Soc., 142 (2014), 2837-2848.
doi: 10.1090/S0002-9939-2014-11995-2. |
[25] |
S. Zhu and S. Zhao, Three-dimensional central configurations in $ {\Bbb {H}}^3 $ and $ {\Bbb {S}}^3 $, J. Math. Phys., 58 (2017), 022901, 7pp.
doi: 10.1063/1.4975214. |
[26] |
S. Zhu, A lower bound for the number of central configurations on $ {\mathbb {H}}^2 $, preprint, arXiv: 1702.05535. Google Scholar |
[27] |
S. Zhu, On Dziobek special central configurations, preprint, arXiv: 1705.03987. Google Scholar |
show all references
References:
[1] |
F. Diacu,
On the singularities of the curved $n$-body problem, Trans. Amer. Math. Soc., 363 (2011), 2249-2264.
doi: 10.1090/S0002-9947-2010-05251-1. |
[2] |
F. Diacu,
Polygonal homographic orbits of the curved $n$-body problem, Trans. Amer. Math. Soc., 364 (2012), 2783-2802.
doi: 10.1090/S0002-9947-2011-05558-3. |
[3] |
F. Diacu, Relative Equilibria of the Curved N-Body Problem, Atlantis Studies in Dynamical Systems, Atlantis Press, Paris, 2012.
doi: 10.2991/978-94-91216-68-8.![]() ![]() |
[4] |
F. Diacu, Relative equilibria in the 3-dimensional curved $n$-body problem, Mem. Amer. Math. Soc., 228 (2014), ⅵ+80 pp. |
[5] |
F. Diacu, Bifurcations of the Lagrangian orbits from the classical to the curved 3-body problem, J. Math. Phys., 57 (2016), 112701, 20pp.
doi: 10.1063/1.4967443. |
[6] |
F. Diacu,
The classical N-body problem in the context of curved space, Canad. J. Math., 69 (2017), 790-806.
doi: 10.4153/CJM-2016-041-2. |
[7] |
F. Diacu and S. Kordlou,
Rotopulsators of the curved $N$-body problem, J. Differential Equations, 255 (2013), 2709-2750.
doi: 10.1016/j.jde.2013.07.009. |
[8] |
F. Diacu, R. Martínez, E. Pérez-Chavela and C. Simó,
On the stability of tetrahedral relative equilibria in the positively curved 4-body problem, Phys. D, 256/257 (2013), 21-35.
doi: 10.1016/j.physd.2013.04.007. |
[9] |
F. Diacu and E. Pérez-Chavela,
Homographic solutions of the curved 3-body problem, J. Differential Equations, 250 (2011), 340-366.
doi: 10.1016/j.jde.2010.08.011. |
[10] |
F. Diacu and S. Popa, All the Lagrangian relative equilibria of the curved 3-body problem have equal masses, J. Math. Phys., 55 (2014), 112701, 9pp.
doi: 10.1063/1.4900833. |
[11] |
F. Diacu, J. M. Sánchez-Cerritos and S. Zhu,
Stability of fixed Points and associated relative equilibria of the 3-body problem on $ {\Bbb {S}}^1 $ and $ {\Bbb {S}}^2 $, J. Dynam. Differential Equations, 30 (2018), 209-225.
doi: 10.1007/s10884-016-9550-6. |
[12] |
F. Diacu, C. Stoica and S. Zhu, Central configurations of the curved N-body problem, J. Nonlinear Sci., 28 (2018), 1999–2046, arXiv: 1603.03342.
doi: 10.1007/s00332-018-9473-y. |
[13] |
M. W. Hirsch, Differential Topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976. |
[14] |
A. A. Kilin,
Libration points in spaces S2 and L2, Regul. Chaotic Dyn., 4 (1999), 91-103.
doi: 10.1070/rd1999v004n01ABEH000101. |
[15] |
V. V. Kozlov and A. O. Harin,
Kepler's problem in constant curvature spaces, Celestial Mech. Dynam. Astronom., 54 (1992), 393-399.
doi: 10.1007/BF00049149. |
[16] |
J. Llibre, R. Moeckel and C. Simó, Central Configurations, Periodic Orbits, and Hamiltonian Systems, Advanced Courses in Mathematics. CRM Barcelona, Lecture notes given at the Centre de Recerca Matemàtica (CRM), Barcelona, January 27–31, 2014, Edited by Montserrat Corbera, Josep Maria Cors and Enrique Ponce, Birkhäuser Springer, Basel, 2015.
doi: 10.1007/978-3-0348-0933-7. |
[17] |
D. G. Saari,
On the role and the properties of n-body central configurations, Celestial Mech., 21 (1980), 9-20.
doi: 10.1007/BF01230241. |
[18] |
E. Schrödinger, A method for determining quantum-mechanical eigenvalues and eigenfunctions, Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 46 (1940), 9-16. Google Scholar |
[19] |
A. V. Shchepetilov,
Nonintegrability of the two-body problem in constant curvature spaces, J. Phys. A, 39 (2006), 5787-5806.
|
[20] |
A. V. Shchepetilov, Calculus and Mechanics on Two-Point Homogeneous Riemannian Spaces, Lecture Notes in Physics, Springer, Berlin, 2006. |
[21] |
S. Smale,
Topology and mechanics. Ⅱ. The planar n-body problem, Invent. Math., 11 (1970), 45-64.
doi: 10.1007/BF01389805. |
[22] |
S. Smale, Problems on the nature of relative equilibria in celestial mechanics, in Manifolds –Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197, Springer, Berlin, (1971), 194–198. |
[23] |
A. Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Mathematical Series, ⅴ. 5, Princeton University Press, Princeton, N. J., 1941.
![]() |
[24] |
S. Zhu,
Eulerian relative equilibria of the curved 3-body problems in S2, Proc. Amer. Math. Soc., 142 (2014), 2837-2848.
doi: 10.1090/S0002-9939-2014-11995-2. |
[25] |
S. Zhu and S. Zhao, Three-dimensional central configurations in $ {\Bbb {H}}^3 $ and $ {\Bbb {S}}^3 $, J. Math. Phys., 58 (2017), 022901, 7pp.
doi: 10.1063/1.4975214. |
[26] |
S. Zhu, A lower bound for the number of central configurations on $ {\mathbb {H}}^2 $, preprint, arXiv: 1702.05535. Google Scholar |
[27] |
S. Zhu, On Dziobek special central configurations, preprint, arXiv: 1705.03987. Google Scholar |


[1] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[2] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[3] |
Yongming Luo, Athanasios Stylianou. On 3d dipolar Bose-Einstein condensates involving quantum fluctuations and three-body interactions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3455-3477. doi: 10.3934/dcdsb.2020239 |
[4] |
Hao Li, Honglin Chen, Matt Haberland, Andrea L. Bertozzi, P. Jeffrey Brantingham. PDEs on graphs for semi-supervised learning applied to first-person activity recognition in body-worn video. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021039 |
[5] |
Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, 2021, 15 (3) : 499-517. doi: 10.3934/ipi.2021002 |
[6] |
Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053 |
[7] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[8] |
Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021049 |
[9] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[10] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[11] |
Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1025-1038. doi: 10.3934/cpaa.2021004 |
[12] |
Yang Zhang. A free boundary problem of the cancer invasion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021092 |
[13] |
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2739-2776. doi: 10.3934/dcds.2020384 |
[14] |
Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks & Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008 |
[15] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[16] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[17] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205 |
[18] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453 |
[19] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031 |
[20] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]