April  2020, 13(4): 1131-1143. doi: 10.3934/dcdss.2020067

Almost all 3-body relative equilibria on $ \mathbb S^2 $ and $ \mathbb H^2 $ are inclined

1. 

Yale-NUS College, National University of Singapore, Republic of Singapore

2. 

School of Mathematical Sciences, University of Science and Technology of China, Hefei, China

* Corresponding author: Shuqiang Zhu

Dedicated to Jürgen Scheurle on the occasion of his 65th birthday
Editors' Note: Florin Diacu passed away on February 13, 2018 before this manuscript could be published. He will be missed by his colleagues, as a mathematician and as a person.

Received  November 2017 Revised  March 2018 Published  April 2019

Fund Project: Florin Diacu is supported by Yale-NUS startup grant, and Shuqiang Zhu is supported by NSFC(No.11801537, No.11721101) and the Fundamental Research Funds for the Central Universities (No.WK0010450010).

We answer here a question posed by F. Diacu in 2012 that asked whether there exist relative equilibria on $ \mathbb S^2 $ and $ \mathbb H^2 $ that move in a plane non-perpendicular to the rotation axis. For 3-body non-geodesic ordinary central configurations on $ \mathbb S^2 $ and $ \mathbb H^2 $, we find all relative equilibria that move in a plane perpendicular to the rotation axis. We also show that the set of shapes of 3-body non-geodesic ordinary central configurations on $ \mathbb S^2 $ and $ \mathbb H^2 $ is a 3-dimensional manifold. Then we conclude that almost all 3-body relative equilibria move in planes non-perpendicular to the rotation axis.

Citation: Florin Diacu, Shuqiang Zhu. Almost all 3-body relative equilibria on $ \mathbb S^2 $ and $ \mathbb H^2 $ are inclined. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1131-1143. doi: 10.3934/dcdss.2020067
References:
[1]

F. Diacu, On the singularities of the curved $n$-body problem, Trans. Amer. Math. Soc., 363 (2011), 2249-2264.  doi: 10.1090/S0002-9947-2010-05251-1.  Google Scholar

[2]

F. Diacu, Polygonal homographic orbits of the curved $n$-body problem, Trans. Amer. Math. Soc., 364 (2012), 2783-2802.  doi: 10.1090/S0002-9947-2011-05558-3.  Google Scholar

[3] F. Diacu, Relative Equilibria of the Curved N-Body Problem, Atlantis Studies in Dynamical Systems, Atlantis Press, Paris, 2012.  doi: 10.2991/978-94-91216-68-8.  Google Scholar
[4]

F. Diacu, Relative equilibria in the 3-dimensional curved $n$-body problem, Mem. Amer. Math. Soc., 228 (2014), ⅵ+80 pp.  Google Scholar

[5]

F. Diacu, Bifurcations of the Lagrangian orbits from the classical to the curved 3-body problem, J. Math. Phys., 57 (2016), 112701, 20pp. doi: 10.1063/1.4967443.  Google Scholar

[6]

F. Diacu, The classical N-body problem in the context of curved space, Canad. J. Math., 69 (2017), 790-806.  doi: 10.4153/CJM-2016-041-2.  Google Scholar

[7]

F. Diacu and S. Kordlou, Rotopulsators of the curved $N$-body problem, J. Differential Equations, 255 (2013), 2709-2750.  doi: 10.1016/j.jde.2013.07.009.  Google Scholar

[8]

F. DiacuR. MartínezE. Pérez-Chavela and C. Simó, On the stability of tetrahedral relative equilibria in the positively curved 4-body problem, Phys. D, 256/257 (2013), 21-35.  doi: 10.1016/j.physd.2013.04.007.  Google Scholar

[9]

F. Diacu and E. Pérez-Chavela, Homographic solutions of the curved 3-body problem, J. Differential Equations, 250 (2011), 340-366.  doi: 10.1016/j.jde.2010.08.011.  Google Scholar

[10]

F. Diacu and S. Popa, All the Lagrangian relative equilibria of the curved 3-body problem have equal masses, J. Math. Phys., 55 (2014), 112701, 9pp. doi: 10.1063/1.4900833.  Google Scholar

[11]

F. DiacuJ. M. Sánchez-Cerritos and S. Zhu, Stability of fixed Points and associated relative equilibria of the 3-body problem on $ {\Bbb {S}}^1 $ and $ {\Bbb {S}}^2 $, J. Dynam. Differential Equations, 30 (2018), 209-225.  doi: 10.1007/s10884-016-9550-6.  Google Scholar

[12]

F. Diacu, C. Stoica and S. Zhu, Central configurations of the curved N-body problem, J. Nonlinear Sci., 28 (2018), 1999–2046, arXiv: 1603.03342. doi: 10.1007/s00332-018-9473-y.  Google Scholar

[13]

M. W. Hirsch, Differential Topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976.  Google Scholar

[14]

A. A. Kilin, Libration points in spaces S2 and L2, Regul. Chaotic Dyn., 4 (1999), 91-103.  doi: 10.1070/rd1999v004n01ABEH000101.  Google Scholar

[15]

V. V. Kozlov and A. O. Harin, Kepler's problem in constant curvature spaces, Celestial Mech. Dynam. Astronom., 54 (1992), 393-399.  doi: 10.1007/BF00049149.  Google Scholar

[16]

J. Llibre, R. Moeckel and C. Simó, Central Configurations, Periodic Orbits, and Hamiltonian Systems, Advanced Courses in Mathematics. CRM Barcelona, Lecture notes given at the Centre de Recerca Matemàtica (CRM), Barcelona, January 27–31, 2014, Edited by Montserrat Corbera, Josep Maria Cors and Enrique Ponce, Birkhäuser Springer, Basel, 2015. doi: 10.1007/978-3-0348-0933-7.  Google Scholar

[17]

D. G. Saari, On the role and the properties of n-body central configurations, Celestial Mech., 21 (1980), 9-20.  doi: 10.1007/BF01230241.  Google Scholar

[18]

E. Schrödinger, A method for determining quantum-mechanical eigenvalues and eigenfunctions, Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 46 (1940), 9-16.   Google Scholar

[19]

A. V. Shchepetilov, Nonintegrability of the two-body problem in constant curvature spaces, J. Phys. A, 39 (2006), 5787-5806.   Google Scholar

[20]

A. V. Shchepetilov, Calculus and Mechanics on Two-Point Homogeneous Riemannian Spaces, Lecture Notes in Physics, Springer, Berlin, 2006.  Google Scholar

[21]

S. Smale, Topology and mechanics. Ⅱ. The planar n-body problem, Invent. Math., 11 (1970), 45-64.  doi: 10.1007/BF01389805.  Google Scholar

[22]

S. Smale, Problems on the nature of relative equilibria in celestial mechanics, in Manifolds –Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197, Springer, Berlin, (1971), 194–198.  Google Scholar

[23] A. Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Mathematical Series, ⅴ. 5, Princeton University Press, Princeton, N. J., 1941.   Google Scholar
[24]

S. Zhu, Eulerian relative equilibria of the curved 3-body problems in S2, Proc. Amer. Math. Soc., 142 (2014), 2837-2848.  doi: 10.1090/S0002-9939-2014-11995-2.  Google Scholar

[25]

S. Zhu and S. Zhao, Three-dimensional central configurations in $ {\Bbb {H}}^3 $ and $ {\Bbb {S}}^3 $, J. Math. Phys., 58 (2017), 022901, 7pp. doi: 10.1063/1.4975214.  Google Scholar

[26]

S. Zhu, A lower bound for the number of central configurations on $ {\mathbb {H}}^2 $, preprint, arXiv: 1702.05535. Google Scholar

[27]

S. Zhu, On Dziobek special central configurations, preprint, arXiv: 1705.03987. Google Scholar

show all references

References:
[1]

F. Diacu, On the singularities of the curved $n$-body problem, Trans. Amer. Math. Soc., 363 (2011), 2249-2264.  doi: 10.1090/S0002-9947-2010-05251-1.  Google Scholar

[2]

F. Diacu, Polygonal homographic orbits of the curved $n$-body problem, Trans. Amer. Math. Soc., 364 (2012), 2783-2802.  doi: 10.1090/S0002-9947-2011-05558-3.  Google Scholar

[3] F. Diacu, Relative Equilibria of the Curved N-Body Problem, Atlantis Studies in Dynamical Systems, Atlantis Press, Paris, 2012.  doi: 10.2991/978-94-91216-68-8.  Google Scholar
[4]

F. Diacu, Relative equilibria in the 3-dimensional curved $n$-body problem, Mem. Amer. Math. Soc., 228 (2014), ⅵ+80 pp.  Google Scholar

[5]

F. Diacu, Bifurcations of the Lagrangian orbits from the classical to the curved 3-body problem, J. Math. Phys., 57 (2016), 112701, 20pp. doi: 10.1063/1.4967443.  Google Scholar

[6]

F. Diacu, The classical N-body problem in the context of curved space, Canad. J. Math., 69 (2017), 790-806.  doi: 10.4153/CJM-2016-041-2.  Google Scholar

[7]

F. Diacu and S. Kordlou, Rotopulsators of the curved $N$-body problem, J. Differential Equations, 255 (2013), 2709-2750.  doi: 10.1016/j.jde.2013.07.009.  Google Scholar

[8]

F. DiacuR. MartínezE. Pérez-Chavela and C. Simó, On the stability of tetrahedral relative equilibria in the positively curved 4-body problem, Phys. D, 256/257 (2013), 21-35.  doi: 10.1016/j.physd.2013.04.007.  Google Scholar

[9]

F. Diacu and E. Pérez-Chavela, Homographic solutions of the curved 3-body problem, J. Differential Equations, 250 (2011), 340-366.  doi: 10.1016/j.jde.2010.08.011.  Google Scholar

[10]

F. Diacu and S. Popa, All the Lagrangian relative equilibria of the curved 3-body problem have equal masses, J. Math. Phys., 55 (2014), 112701, 9pp. doi: 10.1063/1.4900833.  Google Scholar

[11]

F. DiacuJ. M. Sánchez-Cerritos and S. Zhu, Stability of fixed Points and associated relative equilibria of the 3-body problem on $ {\Bbb {S}}^1 $ and $ {\Bbb {S}}^2 $, J. Dynam. Differential Equations, 30 (2018), 209-225.  doi: 10.1007/s10884-016-9550-6.  Google Scholar

[12]

F. Diacu, C. Stoica and S. Zhu, Central configurations of the curved N-body problem, J. Nonlinear Sci., 28 (2018), 1999–2046, arXiv: 1603.03342. doi: 10.1007/s00332-018-9473-y.  Google Scholar

[13]

M. W. Hirsch, Differential Topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976.  Google Scholar

[14]

A. A. Kilin, Libration points in spaces S2 and L2, Regul. Chaotic Dyn., 4 (1999), 91-103.  doi: 10.1070/rd1999v004n01ABEH000101.  Google Scholar

[15]

V. V. Kozlov and A. O. Harin, Kepler's problem in constant curvature spaces, Celestial Mech. Dynam. Astronom., 54 (1992), 393-399.  doi: 10.1007/BF00049149.  Google Scholar

[16]

J. Llibre, R. Moeckel and C. Simó, Central Configurations, Periodic Orbits, and Hamiltonian Systems, Advanced Courses in Mathematics. CRM Barcelona, Lecture notes given at the Centre de Recerca Matemàtica (CRM), Barcelona, January 27–31, 2014, Edited by Montserrat Corbera, Josep Maria Cors and Enrique Ponce, Birkhäuser Springer, Basel, 2015. doi: 10.1007/978-3-0348-0933-7.  Google Scholar

[17]

D. G. Saari, On the role and the properties of n-body central configurations, Celestial Mech., 21 (1980), 9-20.  doi: 10.1007/BF01230241.  Google Scholar

[18]

E. Schrödinger, A method for determining quantum-mechanical eigenvalues and eigenfunctions, Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 46 (1940), 9-16.   Google Scholar

[19]

A. V. Shchepetilov, Nonintegrability of the two-body problem in constant curvature spaces, J. Phys. A, 39 (2006), 5787-5806.   Google Scholar

[20]

A. V. Shchepetilov, Calculus and Mechanics on Two-Point Homogeneous Riemannian Spaces, Lecture Notes in Physics, Springer, Berlin, 2006.  Google Scholar

[21]

S. Smale, Topology and mechanics. Ⅱ. The planar n-body problem, Invent. Math., 11 (1970), 45-64.  doi: 10.1007/BF01389805.  Google Scholar

[22]

S. Smale, Problems on the nature of relative equilibria in celestial mechanics, in Manifolds –Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197, Springer, Berlin, (1971), 194–198.  Google Scholar

[23] A. Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Mathematical Series, ⅴ. 5, Princeton University Press, Princeton, N. J., 1941.   Google Scholar
[24]

S. Zhu, Eulerian relative equilibria of the curved 3-body problems in S2, Proc. Amer. Math. Soc., 142 (2014), 2837-2848.  doi: 10.1090/S0002-9939-2014-11995-2.  Google Scholar

[25]

S. Zhu and S. Zhao, Three-dimensional central configurations in $ {\Bbb {H}}^3 $ and $ {\Bbb {S}}^3 $, J. Math. Phys., 58 (2017), 022901, 7pp. doi: 10.1063/1.4975214.  Google Scholar

[26]

S. Zhu, A lower bound for the number of central configurations on $ {\mathbb {H}}^2 $, preprint, arXiv: 1702.05535. Google Scholar

[27]

S. Zhu, On Dziobek special central configurations, preprint, arXiv: 1705.03987. Google Scholar

Figure 1.  Lagrangian central configurations on $ \mathbb H^2 $
Figure 2.  An $ \mathbb S^2 $ central configuration on $ z = c $
Figure 3.  The projection of one shape
[1]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[2]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[3]

Yongming Luo, Athanasios Stylianou. On 3d dipolar Bose-Einstein condensates involving quantum fluctuations and three-body interactions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3455-3477. doi: 10.3934/dcdsb.2020239

[4]

Hao Li, Honglin Chen, Matt Haberland, Andrea L. Bertozzi, P. Jeffrey Brantingham. PDEs on graphs for semi-supervised learning applied to first-person activity recognition in body-worn video. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021039

[5]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, 2021, 15 (3) : 499-517. doi: 10.3934/ipi.2021002

[6]

Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053

[7]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[8]

Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021049

[9]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[10]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[11]

Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1025-1038. doi: 10.3934/cpaa.2021004

[12]

Yang Zhang. A free boundary problem of the cancer invasion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021092

[13]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2739-2776. doi: 10.3934/dcds.2020384

[14]

Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks & Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008

[15]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[16]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[17]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[18]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453

[19]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031

[20]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (143)
  • HTML views (553)
  • Cited by (0)

Other articles
by authors

[Back to Top]