doi: 10.3934/dcdss.2020090

Joint identification via deconvolution of the flux and energy relaxation kernels of the Gurtin-Pipkin model in thermodynamics with memory

Dipartimento di Scienze Matematiche "G.L. Lagrange" (retired), Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy

Received  October 2017 Revised  April 2018 Published  June 2019

Fund Project: This research was partially supported by the Politecnico di Torino, and by the GDRE (Groupement de Recherche Européen) ConEDP (Control of PDEs). The author is a member of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM)

In this paper we present a linear method for the identification of both the energy and flux relaxation kernels in the equation of thermodynamics with memory proposed by M.E. Gurtin and A.G. Pipkin. The method reduces the identification of the two kernels to the solution of two (linear) deconvolution problems. The energy relaxation kernel is reconstructed by means of energy measurements as the solution of a Volterra integral equation of the first kind which does not depend on the still unknown flux relaxation kernel. Then, flux measurements are used to identify the flux relaxation kernel.

Citation: Luciano Pandolfi. Joint identification via deconvolution of the flux and energy relaxation kernels of the Gurtin-Pipkin model in thermodynamics with memory. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020090
References:
[1]

G. Amendola, M. Fabrizio and J. M. Golden, Thermodynamics of Materials with Memory. Theory and Applications,, Springer, New York, 2012. doi: 10.1007/978-1-4614-1692-0. Google Scholar

[2]

S. Avdonin and L. Pandolfi, A linear algorithm for the identification of a weakly singular relaxation kernel using two boundary measurements, J. Inv. Ill Posed Problems, 26 (2018), 299-310. doi: 10.1515/jiip-2016-0064. Google Scholar

[3]

A. Belleni-Morante, An integro-differential equation arising from the theory of heat conduction in rigid materials with memory, Boll. Unione Mat. Ital., 15 (1978), 470-482. Google Scholar

[4]

D. Brandon and W. J. Hrusa, Construction of a class of integral models for heat flow in materials with memory, J. Integral Equations Appl., 1 (1988), 175-201. doi: 10.1216/JIE-1988-1-2-175. Google Scholar

[5]

D. L. BykovA. V. KazakovD. N. KonovalovV. P. Me'lnikovA. N. Osavchuk and V. A. Peleshko, Identification of the model of nonlinear viscoelasticity of filled polymer materials in millisecond time range, Mechanics of Solids, 47 (2012), 641-645. doi: 10.3103/S0025654412060052. Google Scholar

[6]

F. ColomboD. Guidetti and V. Vespri, Identification of two memory kernels and the time dependence of the heat source for a parabolic conserved phase-field model, Math. Methods Appl. Sci., 28 (2005), 2085-2115. doi: 10.1002/mma.658. Google Scholar

[7]

W. A. Day, On monotonicity of the relaxation functions of viscoelastic materials, Proc. Camb. Phil. Soc., 67 (1970), 503-508. doi: 10.1017/S0305004100045771. Google Scholar

[8]

V. P. GolubB. P. Maslov and P. V. Fernati, Identification of the hereditary kernels of isotropic linear viscoelastic materials in combined stress state. 1. Superposition of shear and bulk kreep,, International Applied mechanics, 52 (2016), 648-660. doi: 10.1007/s10778-016-0744-8. Google Scholar

[9]

D. Guidetti, Reconstruction of a bounded variation convolution kernel in an abstract wave equation, Forum Math., 22 (2010), 1129-1160. doi: 10.1515/FORUM.2010.060. Google Scholar

[10]

M. E. Gurtin and A. G. Pipkin, A general theory of heat conduction with finite wave speed, Arch. Rational Mech. Anal., 31 (1968), 113-126. doi: 10.1007/BF00281373. Google Scholar

[11]

J. Janno and A. Lorenzi, Recovering memory kernels in parabolic transmission problems, J. Inverse Ill-Posed Probl., 16 (2008), 239-265. doi: 10.1515/JIIP.2008.015. Google Scholar

[12]

A. Lorenzi and E. Rocca, Identification of two memory kernels in a fully hyperbolic phase-field system, J. Inverse Ill-Posed Probl., 16 (2008), 147-174. doi: 10.1515/JIIP.2008.010. Google Scholar

[13]

A. Lorenzi and E. Sinestrari, An inverse problem in the theory of materials with memory, Nonlinear Anal., 12 (1988), 1317-1335. doi: 10.1016/0362-546X(88)90080-6. Google Scholar

[14]

E. Pais and J. Janno, Identification of two degenerate time-and space-dependent kernels in a parabolic equation, Electron. J. Differential Equations, 180 (2005), 1-20. Google Scholar

[15]

L. Pandolfi, Riesz systems and the controllability of heat equations with memory,, Int. Eq. Operator Theory, 64 (2009), 429-453. doi: 10.1007/s00020-009-1682-1. Google Scholar

[16]

L. Pandolfi, Distributed Systems with Persistent Memory. Control and Moment Problems,, Springer Briefs in Electrical and Computer Engineering. Control, Automation and Robotics. Springer, Cham, 2014. doi: 10.1007/978-3-319-12247-2. Google Scholar

[17]

L. Pandolfi, A linear algorithm for the identification of a relaxation kernel using two boundary measures,, Inverse Problems, 31 (2015), 105003, 12 pp. doi: 10.1088/0266-5611/31/10/105003. Google Scholar

[18]

L. Pandolfi, Identification of the relaxation kernel in diffusion processes and viscoelasticity with memory via deconvolution,, Math. Methods Appl. Sci., 40 (2017), 2542-2549. doi: 10.1002/mma.4180. Google Scholar

show all references

References:
[1]

G. Amendola, M. Fabrizio and J. M. Golden, Thermodynamics of Materials with Memory. Theory and Applications,, Springer, New York, 2012. doi: 10.1007/978-1-4614-1692-0. Google Scholar

[2]

S. Avdonin and L. Pandolfi, A linear algorithm for the identification of a weakly singular relaxation kernel using two boundary measurements, J. Inv. Ill Posed Problems, 26 (2018), 299-310. doi: 10.1515/jiip-2016-0064. Google Scholar

[3]

A. Belleni-Morante, An integro-differential equation arising from the theory of heat conduction in rigid materials with memory, Boll. Unione Mat. Ital., 15 (1978), 470-482. Google Scholar

[4]

D. Brandon and W. J. Hrusa, Construction of a class of integral models for heat flow in materials with memory, J. Integral Equations Appl., 1 (1988), 175-201. doi: 10.1216/JIE-1988-1-2-175. Google Scholar

[5]

D. L. BykovA. V. KazakovD. N. KonovalovV. P. Me'lnikovA. N. Osavchuk and V. A. Peleshko, Identification of the model of nonlinear viscoelasticity of filled polymer materials in millisecond time range, Mechanics of Solids, 47 (2012), 641-645. doi: 10.3103/S0025654412060052. Google Scholar

[6]

F. ColomboD. Guidetti and V. Vespri, Identification of two memory kernels and the time dependence of the heat source for a parabolic conserved phase-field model, Math. Methods Appl. Sci., 28 (2005), 2085-2115. doi: 10.1002/mma.658. Google Scholar

[7]

W. A. Day, On monotonicity of the relaxation functions of viscoelastic materials, Proc. Camb. Phil. Soc., 67 (1970), 503-508. doi: 10.1017/S0305004100045771. Google Scholar

[8]

V. P. GolubB. P. Maslov and P. V. Fernati, Identification of the hereditary kernels of isotropic linear viscoelastic materials in combined stress state. 1. Superposition of shear and bulk kreep,, International Applied mechanics, 52 (2016), 648-660. doi: 10.1007/s10778-016-0744-8. Google Scholar

[9]

D. Guidetti, Reconstruction of a bounded variation convolution kernel in an abstract wave equation, Forum Math., 22 (2010), 1129-1160. doi: 10.1515/FORUM.2010.060. Google Scholar

[10]

M. E. Gurtin and A. G. Pipkin, A general theory of heat conduction with finite wave speed, Arch. Rational Mech. Anal., 31 (1968), 113-126. doi: 10.1007/BF00281373. Google Scholar

[11]

J. Janno and A. Lorenzi, Recovering memory kernels in parabolic transmission problems, J. Inverse Ill-Posed Probl., 16 (2008), 239-265. doi: 10.1515/JIIP.2008.015. Google Scholar

[12]

A. Lorenzi and E. Rocca, Identification of two memory kernels in a fully hyperbolic phase-field system, J. Inverse Ill-Posed Probl., 16 (2008), 147-174. doi: 10.1515/JIIP.2008.010. Google Scholar

[13]

A. Lorenzi and E. Sinestrari, An inverse problem in the theory of materials with memory, Nonlinear Anal., 12 (1988), 1317-1335. doi: 10.1016/0362-546X(88)90080-6. Google Scholar

[14]

E. Pais and J. Janno, Identification of two degenerate time-and space-dependent kernels in a parabolic equation, Electron. J. Differential Equations, 180 (2005), 1-20. Google Scholar

[15]

L. Pandolfi, Riesz systems and the controllability of heat equations with memory,, Int. Eq. Operator Theory, 64 (2009), 429-453. doi: 10.1007/s00020-009-1682-1. Google Scholar

[16]

L. Pandolfi, Distributed Systems with Persistent Memory. Control and Moment Problems,, Springer Briefs in Electrical and Computer Engineering. Control, Automation and Robotics. Springer, Cham, 2014. doi: 10.1007/978-3-319-12247-2. Google Scholar

[17]

L. Pandolfi, A linear algorithm for the identification of a relaxation kernel using two boundary measures,, Inverse Problems, 31 (2015), 105003, 12 pp. doi: 10.1088/0266-5611/31/10/105003. Google Scholar

[18]

L. Pandolfi, Identification of the relaxation kernel in diffusion processes and viscoelasticity with memory via deconvolution,, Math. Methods Appl. Sci., 40 (2017), 2542-2549. doi: 10.1002/mma.4180. Google Scholar

[1]

Fabrizio Colombo, Davide Guidetti. Identification of the memory kernel in the strongly damped wave equation by a flux condition. Communications on Pure & Applied Analysis, 2009, 8 (2) : 601-620. doi: 10.3934/cpaa.2009.8.601

[2]

Xiao-Qiang Zhao, Shengfan Zhou. Kernel sections for processes and nonautonomous lattice systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 763-785. doi: 10.3934/dcdsb.2008.9.763

[3]

Artur Stephan, Holger Stephan. Memory equations as reduced Markov processes. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2133-2155. doi: 10.3934/dcds.2019089

[4]

Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. Heat conduction with memory: A singular kernel problem. Evolution Equations & Control Theory, 2014, 3 (3) : 399-410. doi: 10.3934/eect.2014.3.399

[5]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[6]

Davide Guidetti. Some inverse problems of identification for integrodifferential parabolic systems with a boundary memory term. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 749-756. doi: 10.3934/dcdss.2015.8.749

[7]

Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745

[8]

Filippo Dell'Oro, Vittorino Pata. Memory relaxation of type III thermoelastic extensible beams and Berger plates. Evolution Equations & Control Theory, 2012, 1 (2) : 251-270. doi: 10.3934/eect.2012.1.251

[9]

M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079

[10]

A. Guillin, R. Liptser. Examples of moderate deviation principle for diffusion processes. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 803-828. doi: 10.3934/dcdsb.2006.6.803

[11]

Shantanu Das. Memorized relaxation with singular and non-singular memory kernels for basic relaxation of dielectric vis-à-vis Curie-von Schweidler & Kohlrausch relaxation laws. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 575-607. doi: 10.3934/dcdss.2020032

[12]

Giorgio Metafune, Chiara Spina. Heat Kernel estimates for some elliptic operators with unbounded diffusion coefficients. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2285-2299. doi: 10.3934/dcds.2012.32.2285

[13]

Sallah Eddine Boutiah, Abdelaziz Rhandi, Cristian Tacelli. Kernel estimates for elliptic operators with unbounded diffusion, drift and potential terms. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 803-817. doi: 10.3934/dcds.2019033

[14]

Sandra Carillo. Some remarks on the model of rigid heat conductor with memory: Unbounded heat relaxation function. Evolution Equations & Control Theory, 2019, 8 (1) : 31-42. doi: 10.3934/eect.2019002

[15]

Martin Burger, Jan-Frederik Pietschmann, Marie-Therese Wolfram. Identification of nonlinearities in transport-diffusion models of crowded motion. Inverse Problems & Imaging, 2013, 7 (4) : 1157-1182. doi: 10.3934/ipi.2013.7.1157

[16]

Gianluca Mola, Noboru Okazawa, Jan Prüss, Tomomi Yokota. Semigroup-theoretic approach to identification of linear diffusion coefficients. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 777-790. doi: 10.3934/dcdss.2016028

[17]

Filipa Caetano, Martin J. Gander, Laurence Halpern, Jérémie Szeftel. Schwarz waveform relaxation algorithms for semilinear reaction-diffusion equations. Networks & Heterogeneous Media, 2010, 5 (3) : 487-505. doi: 10.3934/nhm.2010.5.487

[18]

Fang Li, Kimie Nakashima, Wei-Ming Ni. Stability from the point of view of diffusion, relaxation and spatial inhomogeneity. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 259-274. doi: 10.3934/dcds.2008.20.259

[19]

Rúben Sousa, Semyon Yakubovich. The spectral expansion approach to index transforms and connections with the theory of diffusion processes. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2351-2378. doi: 10.3934/cpaa.2018112

[20]

Qiang Du, Zhan Huang, Richard B. Lehoucq. Nonlocal convection-diffusion volume-constrained problems and jump processes. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 373-389. doi: 10.3934/dcdsb.2014.19.373

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (4)
  • HTML views (126)
  • Cited by (0)

Other articles
by authors

[Back to Top]