December  2020, 13(12): 3495-3502. doi: 10.3934/dcdss.2020248

A quantitative Hopf-type maximum principle for subsolutions of elliptic PDEs

1. 

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656, Warszawa, Poland

2. 

Lublin University of Technology, Nadbystrzycka 38A, 20–618 Lublin, Poland

* Corresponding author: Adam Bobrowski

Dedicated to Gisèle Ruiz Goldstein

Received  September 2019 Published  January 2020

Fund Project: T.K. acknowledges the support of the National Science Centre: NCN grant 2016/23/B/ST1/00492.

Suppose that $ u(x) $ is a positive subsolution to an elliptic equation in a bounded domain $ D $, with the $ C^2 $ smooth boundary $ \partial D $. We prove a quantitative version of the Hopf maximum principle that can be formulated as follows: there exists a constant $ \gamma>0 $ such that $ \partial_{\bf n}u(\tilde x) $ – the outward normal derivative at the maximum point $ \tilde x\in \partial D $ (necessary located at $ \partial D $, by the strong maximum principle) – satisfies $ \partial_{\bf n}u(\tilde x)>\gamma u(\tilde x) $, provided the coefficient $ c(x) $ by the zero order term satisfies $ \sup_{x\in D}c(x) = -c_*<0 $. The constant $ \gamma $ depends only on the geometry of $ D $, uniform ellipticity bound, $ L^\infty $ bounds on the coefficients, and $ c_* $. The key tool used is the Feynman–Kac representation of a subsolution to the elliptic equation.

Citation: Tomasz Komorowski, Adam Bobrowski. A quantitative Hopf-type maximum principle for subsolutions of elliptic PDEs. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3495-3502. doi: 10.3934/dcdss.2020248
References:
[1]

H. BerestyckiL. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., 47 (1994), 47-92.  doi: 10.1002/cpa.3160470105.  Google Scholar

[2]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer-Verlag, Berlin, 2001.  Google Scholar

[3]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, , Second edition. Graduate Texts in Mathematics, 113. Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0949-2.  Google Scholar

[4]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967.  Google Scholar

[5]

D. H. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, Grundlehren der Mathematischen Wissenschaften, 233. Springer-Verlag, Berlin-New York, 1979.  Google Scholar

show all references

References:
[1]

H. BerestyckiL. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., 47 (1994), 47-92.  doi: 10.1002/cpa.3160470105.  Google Scholar

[2]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer-Verlag, Berlin, 2001.  Google Scholar

[3]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, , Second edition. Graduate Texts in Mathematics, 113. Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0949-2.  Google Scholar

[4]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967.  Google Scholar

[5]

D. H. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, Grundlehren der Mathematischen Wissenschaften, 233. Springer-Verlag, Berlin-New York, 1979.  Google Scholar

Figure 1.  The solid curve $ \partial D $ separates $ D $ (below) from its complement $ D^\complement $ (above). The set $ \partial K( x,r/2)\cap K( y,r) $ forms an arc on which the centers of the small dotted circles, representing $ \partial K(z,\delta) $, lie.
[1]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[2]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[3]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[4]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[5]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[6]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[7]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[8]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[9]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[10]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[11]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[12]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[13]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[14]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[15]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[16]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[17]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[18]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[19]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[20]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (117)
  • HTML views (352)
  • Cited by (0)

Other articles
by authors

[Back to Top]