
-
Previous Article
A wavelet method for nonlinear variable-order time fractional 2D Schrödinger equation
- DCDS-S Home
- This Issue
-
Next Article
On solutions of fractal fractional differential equations
Melnikov analysis of the nonlocal nanobeam resting on fractional-order softening nonlinear viscoelastic foundations
1. | Department of Physics, Faculty of Science, The University of Maroua, Maroua, 814, Cameroon |
2. | Laboratory of Mechanics, Materials and Structures, Doctoral research unit in Physics and Applications, University of Yaounde I, Yaounde, 812, Cameroon |
In the present study, the dynamics of nanobeam resting on fractional order softening nonlinear viscoelastic pasternack foundations is studied. The Hamilton principle is used to derive the nonlinear equation of the motion. Approximate analytical solution is obtained by applying the standard averaging method. The Melnikov method is used to investigate the chaotic behaviors of device, the critical curve separating the chaotic and non-chaotic regions are found. It is shown that the distance between chaotic region and non-chaotic region in this kind of structure depends strongly on the fractional order parameter.
References:
[1] |
J. D. Achenbach and C. Sun, Moving load on a flexibly supported timochenko beam, Int. J. Solids Struct., 1 (1965), 353-370. Google Scholar |
[2] |
L. M. Anague Tabejieu, B. R. Nana Nbendjo and P. Woafo,
On the dynamics of rayleigh beams resting on fractional-order viscoelastic pasternak foundations subjected to moving loads, Chaos Solitons Fract., 93 (2016), 39-47.
doi: 10.1016/j.chaos.2016.10.001. |
[3] |
A. A. Andronov and A. Witt, Towards mathematical theory of capture, Archiv. fur Electrotechnik, 24 (1930), 99-110. Google Scholar |
[4] |
H. Askari, H. Jamchidifar and B. Fidan,
High resolution mass identification using nonlinear vibrations of nanoplates, Measurement, 101 (2017), 166-174.
doi: 10.1016/j.measurement.2017.01.012. |
[5] |
M. Aydogdu,
Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity, Mech. Res. Commun., 43 (2012), 34-40.
doi: 10.1016/j.mechrescom.2012.02.001. |
[6] |
M. Aydogdu and M. Arda,
Torsional vibration analysis of double walled carbon nanotubes using nonlocal elasticity, Int. J. Mech. Mater. Des., 12 (2016), 71-84.
doi: 10.1007/s10999-014-9292-8. |
[7] |
B. E. Demartini, H. E. Butterfield, J. Moehlis and K. L. Turner,
Chaos in microelectromechanical oscillator governed by the nonlinear Mathieu equation, J. Microelec. Syst., 16 (2007), 1314-1323.
doi: 10.1109/JMEMS.2007.906757. |
[8] |
H. Ding, Q. L. Chen and S. P. Yang, Convergence of garlekin truncation for dynamic response of finite beams on nonlinear foundations under a moving load, J. Sound Vib., 331 (2012), 2426-2442. Google Scholar |
[9] |
A. C. Eringen,
On differential equations of nonlocal elasticity and solution of screw dislocation and surface waves, J. Appl. Phys., 54 (1983), 4703-4710.
doi: 10.1063/1.332803. |
[10] |
A. C. Eringen, Nonlocal Continuum Fields Theories, Springer, USA, 2002. |
[11] |
E. Ghavanloo, F. Daneshmand and M. Rafiei, Vibration and instability analysis of carbon nanotubes conveying fluid and resting on a linear viscoelastic Winkler foundation, Physica E, 42 (2010), 2218-2224. Google Scholar |
[12] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical System and Bifurcation of Vector Fields, Springer-Verlag, USA, 1983.
doi: 10.1007/978-1-4612-1140-2. |
[13] |
Y. Haitao and Y. Yuan, Analytical solution for an infinite euler-bernoulli beam on a visco-elastic foundation subjected to arbitrary dynamic loads, J. Eng. Mech., 140 (2014), 542-551. Google Scholar |
[14] |
Z. Hryniewicz,
Dynamics of rayleigh beam on nonlinear foundation due to moving load using adomian decomposition and coiflet expansion, Soil Dyn. Earthq. Eng., 31 (2011), 1123-1131.
doi: 10.1016/j.soildyn.2011.03.013. |
[15] |
B. Karami, M. Janghorban and L. Li,
On guided wave propagation in fully clamped porous functionally graded nanoplates, Acta Astronaut, 143 (2018), 380-390.
doi: 10.1016/j.actaastro.2017.12.011. |
[16] |
M. H. Kargonovin, D. Younesian, D. J. Thompson and C. J. C. Jones, Response of beams on the nonlinear viscoelastic foundations to harmonic moving loads, Comput. Struct., 83 (2005), 1865-1877. Google Scholar |
[17] |
M. A. Kazemi-Lari, S. A. Fazelzadeh and E. Ghavanloo,
Non-conservative instability of cantilever carbon nanotubes resting on viscoelastic foundation, Physica E, 44 (2012), 1623-1630.
doi: 10.1016/j.physe.2012.04.007. |
[18] |
K. Kiani,
meshless approach for free transverse vibration of embedded single walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect, Int. J. Mech. Sci., 52 (2010), 1343-1356.
doi: 10.1016/j.ijmecsci.2010.06.010. |
[19] |
K. Kiani, Vibration analysis of elastically restrained double-walled carbon nanotubes on elastic foundation subject to axial load using nonlocal shear deformable beam theories, Int. J. Mech. Sci., 68 (2013), 16-34. Google Scholar |
[20] |
K. Kiani,
Nonlinear vibrations of a single-walled carbon nanotube for delivering of nanoparticles, Nonlinear Dyn., 76 (2014), 1885-1903.
doi: 10.1007/s11071-014-1255-y. |
[21] |
H. L. Lee and W. J. Chang,
Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium, Physica E, 41 (2009), 529-532.
doi: 10.1016/j.physe.2008.10.002. |
[22] |
P. M. Mathews,
Vibrations of a beam on elastic foundation, J. Appl. Math. Mech., 38 (1958), 105-115.
doi: 10.1002/zamm.19580380305. |
[23] |
I. Mehdipour, A. Barari, A. Kimiaeifar and G. Domairry,
Vibrational analysis of curved single-walled carbon nanotube on a pasternak elastic foundation, Adv. Eng. Softw., 48 (2012), 1-5.
doi: 10.1016/j.advengsoft.2012.01.004. |
[24] |
V. K. Melnikov, On the stability of the center of some periodic pertubation, Trans. Moscow Math. Soc., 12 (1963), 1-57. Google Scholar |
[25] |
G. Mikhasev,
On localized modes of free vibrations of single-walled carbon nanotubes embedded in nonhomogeneous elastic medium., Z Angew Math. Mech., 94 (2014), 130-141.
doi: 10.1002/zamm.201200140. |
[26] |
M. Mir and M. Tahani, Chaotic behavior of nonlocal nanobeam resting on a nonlinear viscoelastic foundation subjected to harmonic excitation, Modares Mech. Eng., 18 (2018), 264-272. Google Scholar |
[27] |
T. Murmu and S. C. Pradhan,
Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM, Physica E, 41 (2009), 1232-1239.
doi: 10.1016/j.physe.2009.02.004. |
[28] |
K. B. Mustapha and Z. W. Zhong,
Free transverse vibration of an axially loaded non-prismatic single-walled carbon nanotube embedded in a two parameter elastic medium, Comput. Mater. Sci., 50 (2010), 742-751.
doi: 10.1016/j.commatsci.2010.10.005. |
[29] |
A. H. Nayfeh, Introduction to Pertubation Techniques,, John Wiley, New York, 1981. |
[30] |
A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, John Wiley, New York, 1979. |
[31] |
B. R. Nana Nbendjo and P. Woafo,
Active control with delay of horseshoes chaos using piezoelectric absorber buckled beam under parametric excitation, Chaos Solitons Fract, 32 (2007), 73-79.
doi: 10.1016/j.chaos.2005.10.070. |
[32] |
B. R. Nana Nbendjo and P. Woafo, Modelling of the dynamics of Euler's beam by $ \phi^5 $ potential, Mech. Res. Commun., 38 (2011), 542-545. Google Scholar |
[33] |
H. Niknam and M. M. Aghdam,
A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation, Compos. Struct., 119 (2015), 452-462.
doi: 10.1016/j.compstruct.2014.09.023. |
[34] |
I. Petras, Fractional nonlinear systems: Modeling, analysis and simulation, Higher Education Press , Beijing, 2011. Google Scholar |
[35] |
S. C. Pradhan and G. K. Reddy,
Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM, Comput. Mater. Sci., 50 (2011), 1052-1056.
doi: 10.1016/j.commatsci.2010.11.001. |
[36] |
M. Rafiei, S. R. Mohebpour and F. Daneshmand,
Small-scale effect on the vibration of non-uniform carbon nanotubes conveying fluid and embedded in viscoelastic medium, Physica E, 44 (2012), 1372-1379.
doi: 10.1016/j.physe.2012.02.021. |
[37] |
G. Romano and R. Barreta,
Nonlocal elasticity in nanobeams: The stress-driven integral model, Int. J. Eng. Sci., 115 (2017), 14-27.
doi: 10.1016/j.ijengsci.2017.03.002. |
[38] |
J. A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems,, Springer Science and Business, New York, 2007. |
[39] |
E. J. Sapountzakis and A. Kampitsis,
Nonlinear response of shear deformable beams on tensionless nonlinear viscoelastic foundation under moving loads, J. Sound Vib., 330 (2011), 5410-5426.
doi: 10.1016/j.jsv.2011.06.009. |
[40] |
Y. Shen, H. Y. Sing and H. Ma, Primary resonance of Duffing oscillator with two kinds of fractional-order derivatives, Int. J. Non-linear Mech., 47 (2012), 975-983. Google Scholar |
[41] |
M. S. Siewe and U. H. Hegazy, Homoclinic bifurcation and chaos control in MEMS resonators, Appl. Math. Model., 35 (2011), 5533–5552.
doi: 10.1016/j.apm.2011.05.021. |
[42] |
N. Togun and S. M. Bagdatli,
Nonlinear vibration of a nanobeam on pasternak elastic foundation based on nonlocal euler-bernoulli beam theory, Math. Comput. Appl., 21 (2016), 1-19.
doi: 10.3390/mca21010003. |
[43] |
B. L. Wang and K. F. Wang,
Vibration analysis of embedded nanotubes using nonlocal continuum theory, Composites Part B Eng., 47 (2013), 96-101.
doi: 10.1016/j.compositesb.2012.10.043. |
[44] |
M. H. Yas and N. Samadi,
Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation, Int. J. Press Vessels Piping, 98 (2012), 119-128.
doi: 10.1016/j.ijpvp.2012.07.012. |
[45] |
X. Zhang and L. Zhou,
Melnikovs method for chaos of the nanoplate postulating nonlinear foundation, Appl. Math. Model., 61 (2018), 744-749.
doi: 10.1016/j.apm.2018.05.003. |
show all references
References:
[1] |
J. D. Achenbach and C. Sun, Moving load on a flexibly supported timochenko beam, Int. J. Solids Struct., 1 (1965), 353-370. Google Scholar |
[2] |
L. M. Anague Tabejieu, B. R. Nana Nbendjo and P. Woafo,
On the dynamics of rayleigh beams resting on fractional-order viscoelastic pasternak foundations subjected to moving loads, Chaos Solitons Fract., 93 (2016), 39-47.
doi: 10.1016/j.chaos.2016.10.001. |
[3] |
A. A. Andronov and A. Witt, Towards mathematical theory of capture, Archiv. fur Electrotechnik, 24 (1930), 99-110. Google Scholar |
[4] |
H. Askari, H. Jamchidifar and B. Fidan,
High resolution mass identification using nonlinear vibrations of nanoplates, Measurement, 101 (2017), 166-174.
doi: 10.1016/j.measurement.2017.01.012. |
[5] |
M. Aydogdu,
Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity, Mech. Res. Commun., 43 (2012), 34-40.
doi: 10.1016/j.mechrescom.2012.02.001. |
[6] |
M. Aydogdu and M. Arda,
Torsional vibration analysis of double walled carbon nanotubes using nonlocal elasticity, Int. J. Mech. Mater. Des., 12 (2016), 71-84.
doi: 10.1007/s10999-014-9292-8. |
[7] |
B. E. Demartini, H. E. Butterfield, J. Moehlis and K. L. Turner,
Chaos in microelectromechanical oscillator governed by the nonlinear Mathieu equation, J. Microelec. Syst., 16 (2007), 1314-1323.
doi: 10.1109/JMEMS.2007.906757. |
[8] |
H. Ding, Q. L. Chen and S. P. Yang, Convergence of garlekin truncation for dynamic response of finite beams on nonlinear foundations under a moving load, J. Sound Vib., 331 (2012), 2426-2442. Google Scholar |
[9] |
A. C. Eringen,
On differential equations of nonlocal elasticity and solution of screw dislocation and surface waves, J. Appl. Phys., 54 (1983), 4703-4710.
doi: 10.1063/1.332803. |
[10] |
A. C. Eringen, Nonlocal Continuum Fields Theories, Springer, USA, 2002. |
[11] |
E. Ghavanloo, F. Daneshmand and M. Rafiei, Vibration and instability analysis of carbon nanotubes conveying fluid and resting on a linear viscoelastic Winkler foundation, Physica E, 42 (2010), 2218-2224. Google Scholar |
[12] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical System and Bifurcation of Vector Fields, Springer-Verlag, USA, 1983.
doi: 10.1007/978-1-4612-1140-2. |
[13] |
Y. Haitao and Y. Yuan, Analytical solution for an infinite euler-bernoulli beam on a visco-elastic foundation subjected to arbitrary dynamic loads, J. Eng. Mech., 140 (2014), 542-551. Google Scholar |
[14] |
Z. Hryniewicz,
Dynamics of rayleigh beam on nonlinear foundation due to moving load using adomian decomposition and coiflet expansion, Soil Dyn. Earthq. Eng., 31 (2011), 1123-1131.
doi: 10.1016/j.soildyn.2011.03.013. |
[15] |
B. Karami, M. Janghorban and L. Li,
On guided wave propagation in fully clamped porous functionally graded nanoplates, Acta Astronaut, 143 (2018), 380-390.
doi: 10.1016/j.actaastro.2017.12.011. |
[16] |
M. H. Kargonovin, D. Younesian, D. J. Thompson and C. J. C. Jones, Response of beams on the nonlinear viscoelastic foundations to harmonic moving loads, Comput. Struct., 83 (2005), 1865-1877. Google Scholar |
[17] |
M. A. Kazemi-Lari, S. A. Fazelzadeh and E. Ghavanloo,
Non-conservative instability of cantilever carbon nanotubes resting on viscoelastic foundation, Physica E, 44 (2012), 1623-1630.
doi: 10.1016/j.physe.2012.04.007. |
[18] |
K. Kiani,
meshless approach for free transverse vibration of embedded single walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect, Int. J. Mech. Sci., 52 (2010), 1343-1356.
doi: 10.1016/j.ijmecsci.2010.06.010. |
[19] |
K. Kiani, Vibration analysis of elastically restrained double-walled carbon nanotubes on elastic foundation subject to axial load using nonlocal shear deformable beam theories, Int. J. Mech. Sci., 68 (2013), 16-34. Google Scholar |
[20] |
K. Kiani,
Nonlinear vibrations of a single-walled carbon nanotube for delivering of nanoparticles, Nonlinear Dyn., 76 (2014), 1885-1903.
doi: 10.1007/s11071-014-1255-y. |
[21] |
H. L. Lee and W. J. Chang,
Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium, Physica E, 41 (2009), 529-532.
doi: 10.1016/j.physe.2008.10.002. |
[22] |
P. M. Mathews,
Vibrations of a beam on elastic foundation, J. Appl. Math. Mech., 38 (1958), 105-115.
doi: 10.1002/zamm.19580380305. |
[23] |
I. Mehdipour, A. Barari, A. Kimiaeifar and G. Domairry,
Vibrational analysis of curved single-walled carbon nanotube on a pasternak elastic foundation, Adv. Eng. Softw., 48 (2012), 1-5.
doi: 10.1016/j.advengsoft.2012.01.004. |
[24] |
V. K. Melnikov, On the stability of the center of some periodic pertubation, Trans. Moscow Math. Soc., 12 (1963), 1-57. Google Scholar |
[25] |
G. Mikhasev,
On localized modes of free vibrations of single-walled carbon nanotubes embedded in nonhomogeneous elastic medium., Z Angew Math. Mech., 94 (2014), 130-141.
doi: 10.1002/zamm.201200140. |
[26] |
M. Mir and M. Tahani, Chaotic behavior of nonlocal nanobeam resting on a nonlinear viscoelastic foundation subjected to harmonic excitation, Modares Mech. Eng., 18 (2018), 264-272. Google Scholar |
[27] |
T. Murmu and S. C. Pradhan,
Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM, Physica E, 41 (2009), 1232-1239.
doi: 10.1016/j.physe.2009.02.004. |
[28] |
K. B. Mustapha and Z. W. Zhong,
Free transverse vibration of an axially loaded non-prismatic single-walled carbon nanotube embedded in a two parameter elastic medium, Comput. Mater. Sci., 50 (2010), 742-751.
doi: 10.1016/j.commatsci.2010.10.005. |
[29] |
A. H. Nayfeh, Introduction to Pertubation Techniques,, John Wiley, New York, 1981. |
[30] |
A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, John Wiley, New York, 1979. |
[31] |
B. R. Nana Nbendjo and P. Woafo,
Active control with delay of horseshoes chaos using piezoelectric absorber buckled beam under parametric excitation, Chaos Solitons Fract, 32 (2007), 73-79.
doi: 10.1016/j.chaos.2005.10.070. |
[32] |
B. R. Nana Nbendjo and P. Woafo, Modelling of the dynamics of Euler's beam by $ \phi^5 $ potential, Mech. Res. Commun., 38 (2011), 542-545. Google Scholar |
[33] |
H. Niknam and M. M. Aghdam,
A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation, Compos. Struct., 119 (2015), 452-462.
doi: 10.1016/j.compstruct.2014.09.023. |
[34] |
I. Petras, Fractional nonlinear systems: Modeling, analysis and simulation, Higher Education Press , Beijing, 2011. Google Scholar |
[35] |
S. C. Pradhan and G. K. Reddy,
Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM, Comput. Mater. Sci., 50 (2011), 1052-1056.
doi: 10.1016/j.commatsci.2010.11.001. |
[36] |
M. Rafiei, S. R. Mohebpour and F. Daneshmand,
Small-scale effect on the vibration of non-uniform carbon nanotubes conveying fluid and embedded in viscoelastic medium, Physica E, 44 (2012), 1372-1379.
doi: 10.1016/j.physe.2012.02.021. |
[37] |
G. Romano and R. Barreta,
Nonlocal elasticity in nanobeams: The stress-driven integral model, Int. J. Eng. Sci., 115 (2017), 14-27.
doi: 10.1016/j.ijengsci.2017.03.002. |
[38] |
J. A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems,, Springer Science and Business, New York, 2007. |
[39] |
E. J. Sapountzakis and A. Kampitsis,
Nonlinear response of shear deformable beams on tensionless nonlinear viscoelastic foundation under moving loads, J. Sound Vib., 330 (2011), 5410-5426.
doi: 10.1016/j.jsv.2011.06.009. |
[40] |
Y. Shen, H. Y. Sing and H. Ma, Primary resonance of Duffing oscillator with two kinds of fractional-order derivatives, Int. J. Non-linear Mech., 47 (2012), 975-983. Google Scholar |
[41] |
M. S. Siewe and U. H. Hegazy, Homoclinic bifurcation and chaos control in MEMS resonators, Appl. Math. Model., 35 (2011), 5533–5552.
doi: 10.1016/j.apm.2011.05.021. |
[42] |
N. Togun and S. M. Bagdatli,
Nonlinear vibration of a nanobeam on pasternak elastic foundation based on nonlocal euler-bernoulli beam theory, Math. Comput. Appl., 21 (2016), 1-19.
doi: 10.3390/mca21010003. |
[43] |
B. L. Wang and K. F. Wang,
Vibration analysis of embedded nanotubes using nonlocal continuum theory, Composites Part B Eng., 47 (2013), 96-101.
doi: 10.1016/j.compositesb.2012.10.043. |
[44] |
M. H. Yas and N. Samadi,
Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation, Int. J. Press Vessels Piping, 98 (2012), 119-128.
doi: 10.1016/j.ijpvp.2012.07.012. |
[45] |
X. Zhang and L. Zhou,
Melnikovs method for chaos of the nanoplate postulating nonlinear foundation, Appl. Math. Model., 61 (2018), 744-749.
doi: 10.1016/j.apm.2018.05.003. |










[1] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292 |
[2] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[3] |
Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011 |
[4] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020355 |
[5] |
Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020409 |
[6] |
Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144 |
[7] |
Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116 |
[8] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[9] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[10] |
François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221 |
[11] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[12] |
Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287 |
[13] |
Sugata Gangopadhyay, Constanza Riera, Pantelimon Stănică. Gowers $ U_2 $ norm as a measure of nonlinearity for Boolean functions and their generalizations. Advances in Mathematics of Communications, 2021, 15 (2) : 241-256. doi: 10.3934/amc.2020056 |
[14] |
Fang-Di Dong, Wan-Tong Li, Shi-Liang Wu, Li Zhang. Entire solutions originating from monotone fronts for nonlocal dispersal equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1031-1060. doi: 10.3934/dcdsb.2020152 |
[15] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[16] |
Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020045 |
[17] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020377 |
[18] |
Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278 |
[19] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[20] |
Meenakshi Rana, Shruti Sharma. Combinatorics of some fifth and sixth order mock theta functions. Electronic Research Archive, 2021, 29 (1) : 1803-1818. doi: 10.3934/era.2020092 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]