doi: 10.3934/dcdss.2020261

A new application of the reproducing kernel method

Siirt University, Art and Science Faculty Department of Mathematics 56100 Siirt, Turkey

* Corresponding author: Ali Akgül

Received  April 2019 Revised  June 2019 Published  February 2020

We give a new implementation of the reproducing kernel method to investigate difference equations in this paper. We obtain the solutions in terms of convergent series. The method of obtaining the approximate solution in form of an algorithm is presented. We demonstrate some experiments to prove the accuracy of the technique.

Citation: Ali Akgül. A new application of the reproducing kernel method. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020261
References:
[1]

A. Akgül, On the solution of higher-order difference equations, Mathematical Methods in the Applied Sciences, 40 (2017), 6165-6171.  doi: 10.1002/mma.3870.  Google Scholar

[2]

A. Akgül and E. Bonyah, Reproducing kernel hilbert space method for the solutions of generalized kuramoto–sivashinsky equation, Journal of Taibah University for Science, 13 (2019), 661-669.   Google Scholar

[3]

A. AkgülM. Inc and E. Karatas, Reproducing kernel functions for difference equations, Discrete & Continuous Dynamical Systems-Series S, 8 (2015), 1055-1064.  doi: 10.3934/dcdss.2015.8.1055.  Google Scholar

[4]

O. A. Arqub, Computational algorithm for solving singular fredholm time-fractional partial integrodifferential equations with error estimates, Journal of Applied Mathematics and Computing, 59 (2019), 227-243.  doi: 10.1007/s12190-018-1176-x.  Google Scholar

[5]

F. V. Atkinson, Discrete and Continuous Boundary Problems, Mathematics in Science and Engineering, Vol. 8. Academic Press, New York, 1964.  Google Scholar

[6]

B. Azarnavid, M. Emamjome, M. Nabati and S. Abbasbandy, A reproducing kernel hilbert space approach in meshless collocation method, Computational and Applied Mathematics, 38 (2019), Art. 72, 19 pp. doi: 10.1007/s40314-019-0838-0.  Google Scholar

[7]

M. Cui and Y. Lin, Nonlinear Numerical Analysis in the Reproducing Kernel Space, Nova Science Publishers Inc., New York, 2009.  Google Scholar

[8]

M. De la Sen, The generalized beverton–holt equation and the control of populations, Applied Mathematical Modelling, 32 (2008), 2312-2328.  doi: 10.1016/j.apm.2007.09.007.  Google Scholar

[9]

M. Foroutan, R. Asadi and A. Ebadian, A reproducing kernel hilbert space method for solving the nonlinear three-point boundary value problems, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 32 (2019), e2573. doi: 10.1002/jnm.2573.  Google Scholar

[10]

G. N. Gumah, M. F. M. Naser, M. Al-Smadi and S. K. Al-Omari, Application of reproducing kernel hilbert space method for solving second-order fuzzy volterra integro-differential equations, Advances in Difference Equations, 2018 (2018), Paper No. 475, 15 pp. doi: 10.1186/s13662-018-1937-8.  Google Scholar

[11]

F. T. Isfahani and R. Mokhtari, A numerical approach based on the reproducing kernel hilbert space for solving a class of boundary value optimal control problems, Iranian Journal of Science and Technology, Transactions A: Science, 42 (2018), 2309-2318.  doi: 10.1007/s40995-017-0421-8.  Google Scholar

[12]

B. S. H. Kashkari and M. I. Syam, Reproducing kernel method for solving nonlinear fractional fredholm integrodifferential equation, Complexity, 2018 (2018), 7pp. doi: 10.1155/2018/2304858.  Google Scholar

[13]

W. G. Kelley and A. C. Peterson, Difference Equations, Academic Press Inc., Boston, MA, 1991. An introduction with applications.  Google Scholar

[14]

X. LiH. Li and B. Wu, Piecewise reproducing kernel method for linear impulsive delay differential equations with piecewise constant arguments, Applied Mathematics and Computation, 349 (2019), 304-313.  doi: 10.1016/j.amc.2018.12.054.  Google Scholar

[15]

S. H. Sababe and A. Ebadia, Some properties of reproducing kernel banach and hilbert spaces, Sahand Communications in Mathematical Analysis, 12 (2018), 167-177.   Google Scholar

[16]

Y.-L. WangY. LiuZ. Li and H. zhang, Numerical solution of integro-differential equations of high-order fredholm by the simplified reproducing kernel method, International Journal of Computer Mathematics, 96 (2019), 585-593.  doi: 10.1080/00207160.2018.1455091.  Google Scholar

show all references

References:
[1]

A. Akgül, On the solution of higher-order difference equations, Mathematical Methods in the Applied Sciences, 40 (2017), 6165-6171.  doi: 10.1002/mma.3870.  Google Scholar

[2]

A. Akgül and E. Bonyah, Reproducing kernel hilbert space method for the solutions of generalized kuramoto–sivashinsky equation, Journal of Taibah University for Science, 13 (2019), 661-669.   Google Scholar

[3]

A. AkgülM. Inc and E. Karatas, Reproducing kernel functions for difference equations, Discrete & Continuous Dynamical Systems-Series S, 8 (2015), 1055-1064.  doi: 10.3934/dcdss.2015.8.1055.  Google Scholar

[4]

O. A. Arqub, Computational algorithm for solving singular fredholm time-fractional partial integrodifferential equations with error estimates, Journal of Applied Mathematics and Computing, 59 (2019), 227-243.  doi: 10.1007/s12190-018-1176-x.  Google Scholar

[5]

F. V. Atkinson, Discrete and Continuous Boundary Problems, Mathematics in Science and Engineering, Vol. 8. Academic Press, New York, 1964.  Google Scholar

[6]

B. Azarnavid, M. Emamjome, M. Nabati and S. Abbasbandy, A reproducing kernel hilbert space approach in meshless collocation method, Computational and Applied Mathematics, 38 (2019), Art. 72, 19 pp. doi: 10.1007/s40314-019-0838-0.  Google Scholar

[7]

M. Cui and Y. Lin, Nonlinear Numerical Analysis in the Reproducing Kernel Space, Nova Science Publishers Inc., New York, 2009.  Google Scholar

[8]

M. De la Sen, The generalized beverton–holt equation and the control of populations, Applied Mathematical Modelling, 32 (2008), 2312-2328.  doi: 10.1016/j.apm.2007.09.007.  Google Scholar

[9]

M. Foroutan, R. Asadi and A. Ebadian, A reproducing kernel hilbert space method for solving the nonlinear three-point boundary value problems, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 32 (2019), e2573. doi: 10.1002/jnm.2573.  Google Scholar

[10]

G. N. Gumah, M. F. M. Naser, M. Al-Smadi and S. K. Al-Omari, Application of reproducing kernel hilbert space method for solving second-order fuzzy volterra integro-differential equations, Advances in Difference Equations, 2018 (2018), Paper No. 475, 15 pp. doi: 10.1186/s13662-018-1937-8.  Google Scholar

[11]

F. T. Isfahani and R. Mokhtari, A numerical approach based on the reproducing kernel hilbert space for solving a class of boundary value optimal control problems, Iranian Journal of Science and Technology, Transactions A: Science, 42 (2018), 2309-2318.  doi: 10.1007/s40995-017-0421-8.  Google Scholar

[12]

B. S. H. Kashkari and M. I. Syam, Reproducing kernel method for solving nonlinear fractional fredholm integrodifferential equation, Complexity, 2018 (2018), 7pp. doi: 10.1155/2018/2304858.  Google Scholar

[13]

W. G. Kelley and A. C. Peterson, Difference Equations, Academic Press Inc., Boston, MA, 1991. An introduction with applications.  Google Scholar

[14]

X. LiH. Li and B. Wu, Piecewise reproducing kernel method for linear impulsive delay differential equations with piecewise constant arguments, Applied Mathematics and Computation, 349 (2019), 304-313.  doi: 10.1016/j.amc.2018.12.054.  Google Scholar

[15]

S. H. Sababe and A. Ebadia, Some properties of reproducing kernel banach and hilbert spaces, Sahand Communications in Mathematical Analysis, 12 (2018), 167-177.   Google Scholar

[16]

Y.-L. WangY. LiuZ. Li and H. zhang, Numerical solution of integro-differential equations of high-order fredholm by the simplified reproducing kernel method, International Journal of Computer Mathematics, 96 (2019), 585-593.  doi: 10.1080/00207160.2018.1455091.  Google Scholar

Table 1.  Numerical results for Example 1
$x$ ES AS AE RE CPU time(s)
50 $1.125899907\times 10^{15}$ $1.125899907\times 10^{15}$ $0.0$ $0.0$ 0.078
100 $1.2676506\times 10^{30}$ $1.2676506\times 10^{30}$ $0.0$ $0.0$ 0.032
150 $1.427247693\times 10^{45}$ $1.42721\times 10^{45}$ $0.0$ $0.0000264095715$ 0.094
200 $1.606938044\times 10^{60}$ $1.606938044\times 10^{60}$ $0.0$ $0.0$ 0.031
250 $1.809251394\times 10^{75}$ $1.809251394\times 10^{75}$ $0.0$ $0.0$ 0.063
300 $2.037035976\times 10^{90}$ $2.037035976\times 10^{90}$ $0.0$ $0.0$ 0.078
$x$ ES AS AE RE CPU time(s)
50 $1.125899907\times 10^{15}$ $1.125899907\times 10^{15}$ $0.0$ $0.0$ 0.078
100 $1.2676506\times 10^{30}$ $1.2676506\times 10^{30}$ $0.0$ $0.0$ 0.032
150 $1.427247693\times 10^{45}$ $1.42721\times 10^{45}$ $0.0$ $0.0000264095715$ 0.094
200 $1.606938044\times 10^{60}$ $1.606938044\times 10^{60}$ $0.0$ $0.0$ 0.031
250 $1.809251394\times 10^{75}$ $1.809251394\times 10^{75}$ $0.0$ $0.0$ 0.063
300 $2.037035976\times 10^{90}$ $2.037035976\times 10^{90}$ $0.0$ $0.0$ 0.078
Table 2.  Numerical results for Example 2
$x$ ES AS AE RE CPU time(s)
$10$ $39.88315482$ $39.88315374$ $1.08\times 10^{-6}$ $2.707910156\times 10^{−8}$ 0.344
$20$ $19.99998093$ $19.99998111$ $1.8\times 10^{-7}$ $9.000008582\times 10^{-9}$ 0.421
$30$ $39.99999989$ $39.99999960$ $2.9\times 10^{-7}$ $7.25000002\times 10^{-9}$ 0.344
$40$ $20.00000000$ $19.99999620$ $3.8\times 10^{-6}$ $1.9\times 10^{-7}$ 0.390
$50$ $40.00000000$ $39.99999340$ $6.6\times 10^{-6}$ $1.65\times 10^{-7}$ 0.437
$100$ $20.00000000$ $19.99999843$ $1.57\times 10^{-6}$ $7.85\times 10^{-8}$ 0.405
$x$ ES AS AE RE CPU time(s)
$10$ $39.88315482$ $39.88315374$ $1.08\times 10^{-6}$ $2.707910156\times 10^{−8}$ 0.344
$20$ $19.99998093$ $19.99998111$ $1.8\times 10^{-7}$ $9.000008582\times 10^{-9}$ 0.421
$30$ $39.99999989$ $39.99999960$ $2.9\times 10^{-7}$ $7.25000002\times 10^{-9}$ 0.344
$40$ $20.00000000$ $19.99999620$ $3.8\times 10^{-6}$ $1.9\times 10^{-7}$ 0.390
$50$ $40.00000000$ $39.99999340$ $6.6\times 10^{-6}$ $1.65\times 10^{-7}$ 0.437
$100$ $20.00000000$ $19.99999843$ $1.57\times 10^{-6}$ $7.85\times 10^{-8}$ 0.405
Table 3.  Numerical results for Example 3
$x$ ES AS AE RE CPU
$10$ $0.004173544379$ $0.004173091$ $4.53379\times 10^{-7}$ $ 0.000108631647$ $0.046$
$20$ $0.000004074670078$ $0.000003549$ $5.25670078\times 10^{-7}$ $ 0.1290092371$ $0.078$
$30$ $3.979168669\times 10^{-9}$ $6.56\times 10^{-7}$ $ 6.520208313\times 10^{-7}$ $163.8585558$ $0.063$
$40$ $3.885906902\times 10^{-12}$ $1.66\times 10^{-7}$ $ 1.659961141\times 10^{-7}$ $42717.47067$ $0.031$
$50$ $3.794830960\times 10^{-15}$ $3.68\times 10^{-7}$ $ 3.679999962\times 10^{-7}$ $9.697401546\times 10^{7}$ $0.032$
$60$ $3.705889610\times 10^{-18}$ $9.72\times 10^{-7}$ $ 9.720000000\times 10^{-7}$ $2.622852007\times 10^{11}$ $0.078$
$70$ $3.70588961\times 10^{-18}$ $6.891\times 10^{-7}$ $ 6.891000000\times 10^{-7}$ $1.859472549\times 10^{11}$ $0.078$
$80$ $3.53421174\times 10^{-24}$ $1.675\times 10^{-7}$ $1.675\times 10^{-7}$ $4.739387799\times 10^{16}$ $0.078$
$90$ $3.451378652\times 10^{-27}$ $7.3\times 10^{-8}$ $7.3\times 10^{-8}$ $2.115096817\times 10^{19}$ $0.047$
$100$ $3.370486965\times 10^{-30}$ $0.00000104$ $0.000001048$ $ 3.109342985\times 10^{23}$ $0.031$
$x$ ES AS AE RE CPU
$10$ $0.004173544379$ $0.004173091$ $4.53379\times 10^{-7}$ $ 0.000108631647$ $0.046$
$20$ $0.000004074670078$ $0.000003549$ $5.25670078\times 10^{-7}$ $ 0.1290092371$ $0.078$
$30$ $3.979168669\times 10^{-9}$ $6.56\times 10^{-7}$ $ 6.520208313\times 10^{-7}$ $163.8585558$ $0.063$
$40$ $3.885906902\times 10^{-12}$ $1.66\times 10^{-7}$ $ 1.659961141\times 10^{-7}$ $42717.47067$ $0.031$
$50$ $3.794830960\times 10^{-15}$ $3.68\times 10^{-7}$ $ 3.679999962\times 10^{-7}$ $9.697401546\times 10^{7}$ $0.032$
$60$ $3.705889610\times 10^{-18}$ $9.72\times 10^{-7}$ $ 9.720000000\times 10^{-7}$ $2.622852007\times 10^{11}$ $0.078$
$70$ $3.70588961\times 10^{-18}$ $6.891\times 10^{-7}$ $ 6.891000000\times 10^{-7}$ $1.859472549\times 10^{11}$ $0.078$
$80$ $3.53421174\times 10^{-24}$ $1.675\times 10^{-7}$ $1.675\times 10^{-7}$ $4.739387799\times 10^{16}$ $0.078$
$90$ $3.451378652\times 10^{-27}$ $7.3\times 10^{-8}$ $7.3\times 10^{-8}$ $2.115096817\times 10^{19}$ $0.047$
$100$ $3.370486965\times 10^{-30}$ $0.00000104$ $0.000001048$ $ 3.109342985\times 10^{23}$ $0.031$
Table 4.  Numerical results for Example 4
$x$ ES AS AE RE CPU time(s)
$10$ $1.543083500\times 10^{7}$ $1.543083500\times 10^{7}$ $0.0$ $0.0 $ $0.063$
$20$ $1.890687562\times 10^{19}$ $1.890687562\times 10^{19}$ $0.0$ $ 0.0$ $0.140$
$30$ $2.996465452\times 10^{33}$ $2.996465452\times 10^{33}$ $0.0$ $ 0.0$ $0.094$
$40$ $1.209470191\times 10^{49}$ $1.209470191\times 10^{49}$ $0.0$ $ 0.0$ $0.031$
$50$ $1.240894842\times 10^{64}$ $1.240894842\times 10^{64}$ $0.0$ $ 0.0$ $0.016$
$60$ $4.047603113\times 10^{81}$ $4.047603113\times 10^{81}$ $0.0$ $ 0.0$ $0.125$
$70$ $6.766335157\times 10^{99}$ $6.766335157\times 10^{99}$ $0.0$ $ 0.0$ $0.046$
$80$ $4.604129154\times 10^{118}$ $4.604129154\times 10^{118}$ $0.0$ $0.0$ $0.078$
$90$ $1.072315597\times 10^{138}$ $1.072315597\times 10^{138}$ $0.0$ $0.0$ $0.109$
$100$ $7.467889258\times 10^{157}$ $7.467889258\times 10^{157}$ $0.0$ $0.0$ $0.047$
$x$ ES AS AE RE CPU time(s)
$10$ $1.543083500\times 10^{7}$ $1.543083500\times 10^{7}$ $0.0$ $0.0 $ $0.063$
$20$ $1.890687562\times 10^{19}$ $1.890687562\times 10^{19}$ $0.0$ $ 0.0$ $0.140$
$30$ $2.996465452\times 10^{33}$ $2.996465452\times 10^{33}$ $0.0$ $ 0.0$ $0.094$
$40$ $1.209470191\times 10^{49}$ $1.209470191\times 10^{49}$ $0.0$ $ 0.0$ $0.031$
$50$ $1.240894842\times 10^{64}$ $1.240894842\times 10^{64}$ $0.0$ $ 0.0$ $0.016$
$60$ $4.047603113\times 10^{81}$ $4.047603113\times 10^{81}$ $0.0$ $ 0.0$ $0.125$
$70$ $6.766335157\times 10^{99}$ $6.766335157\times 10^{99}$ $0.0$ $ 0.0$ $0.046$
$80$ $4.604129154\times 10^{118}$ $4.604129154\times 10^{118}$ $0.0$ $0.0$ $0.078$
$90$ $1.072315597\times 10^{138}$ $1.072315597\times 10^{138}$ $0.0$ $0.0$ $0.109$
$100$ $7.467889258\times 10^{157}$ $7.467889258\times 10^{157}$ $0.0$ $0.0$ $0.047$
Table 5.  Numerical results for Example 5
$x$ ES AS AE RE CPU time(s)
50 $1.258626873\times 10^{10}$ $1.258626873\times 10^{10}$ $0.0$ 0.0 2.465
100 $3.542248316\times 10^{20}$ $3.542248316\times 10^{20}$ $0.0$ 0.0 2.386
150 $9.969215980\times 10^{30}$ $9.969215980\times 10^{30}$ $0.0$ 0.0 2.512
200 $2.805711470\times 10^{41}$ $2.805711470\times 10^{41}$ $0.0$ 0.0 2.247
250 $7.896324908\times 10^{51}$ $7.896324908\times 10^{51}$ $0.0$ 0.0 2.340
300 $2.222322136\times 10^{62}$ $2.222322136\times 10^{62}$ $0.0$ 0.0 2.168
350 $6.254448414\times 10^{72}$ $6.254448414\times 10^{72}$ $0.0$ 0.0 2.247
400 $1.760236480\times 10^{83}$ $1.760236480\times 10^{83}$ $0.0$ 0.0 2.262
$x$ ES AS AE RE CPU time(s)
50 $1.258626873\times 10^{10}$ $1.258626873\times 10^{10}$ $0.0$ 0.0 2.465
100 $3.542248316\times 10^{20}$ $3.542248316\times 10^{20}$ $0.0$ 0.0 2.386
150 $9.969215980\times 10^{30}$ $9.969215980\times 10^{30}$ $0.0$ 0.0 2.512
200 $2.805711470\times 10^{41}$ $2.805711470\times 10^{41}$ $0.0$ 0.0 2.247
250 $7.896324908\times 10^{51}$ $7.896324908\times 10^{51}$ $0.0$ 0.0 2.340
300 $2.222322136\times 10^{62}$ $2.222322136\times 10^{62}$ $0.0$ 0.0 2.168
350 $6.254448414\times 10^{72}$ $6.254448414\times 10^{72}$ $0.0$ 0.0 2.247
400 $1.760236480\times 10^{83}$ $1.760236480\times 10^{83}$ $0.0$ 0.0 2.262
Table 6.  Numerical results for Example 6
$x$ ES AS AE CPU time(s)
$10$ $-1$ $-0.9999995$ $5\times 10^{-7}$ $0.094$
$20$ $1$ $0.999902593$ $9.7407\times 10^{-5}$ $0.109$
$30$ $0$ $0.000006701$ $6.701\times 10^{-7}$ $0.110$
$40$ $-1$ $-0.999991867$ $8.133\times 10^{-6}$ $0.062$
$50$ $1$ $0.999997854$ $2.146\times 10^{-6}$ $0.063$
$60$ $0$ $0.000008068$ $8.068\times 10^{-6}$ $0.15$
$70$ $-1$ $-0.999983411$ $1.6589\times 10^{-5}$ $0.062$
$80$ $1$ $0.999969194$ $3.0806\times 10^{-5}$ $0.062$
$90$ $0$ $0.000008144$ $8.144\times 10^{-6}$ $0.78$
$100$ $-1$ $-0.999917201$ $8.2799\times 10^{-5}$ $0.047$
$x$ ES AS AE CPU time(s)
$10$ $-1$ $-0.9999995$ $5\times 10^{-7}$ $0.094$
$20$ $1$ $0.999902593$ $9.7407\times 10^{-5}$ $0.109$
$30$ $0$ $0.000006701$ $6.701\times 10^{-7}$ $0.110$
$40$ $-1$ $-0.999991867$ $8.133\times 10^{-6}$ $0.062$
$50$ $1$ $0.999997854$ $2.146\times 10^{-6}$ $0.063$
$60$ $0$ $0.000008068$ $8.068\times 10^{-6}$ $0.15$
$70$ $-1$ $-0.999983411$ $1.6589\times 10^{-5}$ $0.062$
$80$ $1$ $0.999969194$ $3.0806\times 10^{-5}$ $0.062$
$90$ $0$ $0.000008144$ $8.144\times 10^{-6}$ $0.78$
$100$ $-1$ $-0.999917201$ $8.2799\times 10^{-5}$ $0.047$
[1]

Ali Akgül, Mustafa Inc, Esra Karatas. Reproducing kernel functions for difference equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1055-1064. doi: 10.3934/dcdss.2015.8.1055

[2]

Kaitlyn (Voccola) Muller. A reproducing kernel Hilbert space framework for inverse scattering problems within the Born approximation. Inverse Problems & Imaging, 2019, 13 (6) : 1327-1348. doi: 10.3934/ipi.2019058

[3]

Irene Benedetti, Luisa Malaguti, Valentina Taddei. Nonlocal problems in Hilbert spaces. Conference Publications, 2015, 2015 (special) : 103-111. doi: 10.3934/proc.2015.0103

[4]

Fritz Gesztesy, Rudi Weikard, Maxim Zinchenko. On a class of model Hilbert spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5067-5088. doi: 10.3934/dcds.2013.33.5067

[5]

Yury Neretin. The group of diffeomorphisms of the circle: Reproducing kernels and analogs of spherical functions. Journal of Geometric Mechanics, 2017, 9 (2) : 207-225. doi: 10.3934/jgm.2017009

[6]

Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221

[7]

Jin-Mun Jeong, Seong-Ho Cho. Identification problems of retarded differential systems in Hilbert spaces. Evolution Equations & Control Theory, 2017, 6 (1) : 77-91. doi: 10.3934/eect.2017005

[8]

Giuseppe Da Prato, Franco Flandoli. Some results for pathwise uniqueness in Hilbert spaces. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1789-1797. doi: 10.3934/cpaa.2014.13.1789

[9]

Guangcun Lu. The splitting lemmas for nonsmooth functionals on Hilbert spaces I. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2939-2990. doi: 10.3934/dcds.2013.33.2939

[10]

Bernd Hofmann, Barbara Kaltenbacher, Elena Resmerita. Lavrentiev's regularization method in Hilbert spaces revisited. Inverse Problems & Imaging, 2016, 10 (3) : 741-764. doi: 10.3934/ipi.2016019

[11]

Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic & Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205

[12]

Qi Wang, Yue Zhou. Sets of zero-difference balanced functions and their applications. Advances in Mathematics of Communications, 2014, 8 (1) : 83-101. doi: 10.3934/amc.2014.8.83

[13]

Zhongliang Deng, Enwen Hu. Error minimization with global optimization for difference of convex functions. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1027-1033. doi: 10.3934/dcdss.2019070

[14]

Anton Petrunin. Harmonic functions on Alexandrov spaces and their applications. Electronic Research Announcements, 2003, 9: 135-141.

[15]

Feng Luo. Geodesic length functions and Teichmuller spaces. Electronic Research Announcements, 1996, 2: 34-41.

[16]

Simone Creo, Maria Rosaria Lancia, Alejandro Vélez-Santiago, Paola Vernole. Approximation of a nonlinear fractal energy functional on varying Hilbert spaces. Communications on Pure & Applied Analysis, 2018, 17 (2) : 647-669. doi: 10.3934/cpaa.2018035

[17]

Pengyu Chen, Yongxiang Li, Xuping Zhang. On the initial value problem of fractional stochastic evolution equations in Hilbert spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1817-1840. doi: 10.3934/cpaa.2015.14.1817

[18]

Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427

[19]

Alfredo Lorenzi, Gianluca Mola. Identification of a real constant in linear evolution equations in Hilbert spaces. Inverse Problems & Imaging, 2011, 5 (3) : 695-714. doi: 10.3934/ipi.2011.5.695

[20]

Panayotis Smyrnelis. Connecting orbits in Hilbert spaces and applications to P.D.E. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2797-2818. doi: 10.3934/cpaa.2020122

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (31)
  • HTML views (71)
  • Cited by (0)

Other articles
by authors

[Back to Top]