# American Institute of Mathematical Sciences

November  2021, 14(11): 4141-4157. doi: 10.3934/dcdss.2021003

## Equilibrium of immersed hyperelastic solids

 1 Applied Mathematics, University of Münster, Einsteinstr. 62, D-48149 Münster, Germany 2 Academy of Sciences of the Czech Republic, Institute of Information Theory and Automation, Pod vodárenskou věží 4, CZ-182 00 Praha 8, Czechia and, Faculty of Civil Engineering, Czech Technical University, Thákurova 7, CZ–166 29 Praha 6, Czechia 3 Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria, Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währingerstraße 17, 1090 Wien, Austria, and, Istituto di Matematica Applicata e Tecnologie Informatiche E. Magenes - CNR, via Ferrata 1, 27100 Pavia, Italy

* Corresponding author: Ulisse Stefanelli

Received  March 2020 Revised  October 2020 Published  November 2021 Early access  January 2021

We discuss different equilibrium problems for hyperelastic solids immersed in a fluid at rest. In particular, solids are subjected to gravity and hydrostatic pressure on their immersed boundaries. By means of a variational approach, we discuss free-floating bodies, anchored solids, and floating vessels. Conditions for the existence of local and global energy minimizers are presented.

Citation: Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021, 14 (11) : 4141-4157. doi: 10.3934/dcdss.2021003
##### References:

show all references

##### References:
The basic setting
The submarine setting
Two anchored situations: prescribed deformation on $\omega \subset \Omega$ (left) and elastic boundary conditions on $\Gamma\subset \partial \Omega$ (right)
The bounded-reservoir setting
The ship setting
A barely floating solid (left) and an admissible $y\in A$ with $A$ from (33) (right)
A deformation with $\omega^{y^*}\subset\Omega^{y^*}$ with $\sup_{\omega^{y^*}} y^*_3 = 0$ and $\sup_{\Omega^{y*}}y^*_3>0$
 [1] Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068 [2] De-Jun Feng, Antti Käenmäki. Equilibrium states of the pressure function for products of matrices. Discrete & Continuous Dynamical Systems, 2011, 30 (3) : 699-708. doi: 10.3934/dcds.2011.30.699 [3] Eric Blayo, Antoine Rousseau. About interface conditions for coupling hydrostatic and nonhydrostatic Navier-Stokes flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1565-1574. doi: 10.3934/dcdss.2016063 [4] Amin Boumenir. Determining the shape of a solid of revolution. Mathematical Control & Related Fields, 2019, 9 (3) : 509-515. doi: 10.3934/mcrf.2019023 [5] Guohua Zhang. Variational principles of pressure. Discrete & Continuous Dynamical Systems, 2009, 24 (4) : 1409-1435. doi: 10.3934/dcds.2009.24.1409 [6] Marie-Odile Bristeau, Jacques Sainte-Marie. Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 733-759. doi: 10.3934/dcdsb.2008.10.733 [7] Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1091-1102. doi: 10.3934/cpaa.2021008 [8] Ruxandra Stavre. Optimization of the blood pressure with the control in coefficients. Evolution Equations & Control Theory, 2020, 9 (1) : 131-151. doi: 10.3934/eect.2020019 [9] Volker Elling. Compressible vortex sheets separating from solid boundaries. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6781-6797. doi: 10.3934/dcds.2016095 [10] Henk W. Broer, Carles Simó, Renato Vitolo. Chaos and quasi-periodicity in diffeomorphisms of the solid torus. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 871-905. doi: 10.3934/dcdsb.2010.14.871 [11] Jianjun Paul Tian, Kendall Stone, Thomas John Wallin. A simplified mathematical model of solid tumor regrowth with therapies. Conference Publications, 2009, 2009 (Special) : 771-779. doi: 10.3934/proc.2009.2009.771 [12] Leda Bucciantini, Angiolo Farina, Antonio Fasano. Flows in porous media with erosion of the solid matrix. Networks & Heterogeneous Media, 2010, 5 (1) : 63-95. doi: 10.3934/nhm.2010.5.63 [13] Johannes Elschner, George C. Hsiao, Andreas Rathsfeld. An inverse problem for fluid-solid interaction. Inverse Problems & Imaging, 2008, 2 (1) : 83-120. doi: 10.3934/ipi.2008.2.83 [14] Peter Monk, Virginia Selgas. An inverse fluid--solid interaction problem. Inverse Problems & Imaging, 2009, 3 (2) : 173-198. doi: 10.3934/ipi.2009.3.173 [15] Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations & Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83 [16] Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations & Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59 [17] Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems, 2011, 31 (2) : 545-556. doi: 10.3934/dcds.2011.31.545 [18] Marc Rauch. Variational principles for the topological pressure of measurable potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 367-394. doi: 10.3934/dcdss.2017018 [19] M. Bulíček, Josef Málek, Dalibor Pražák. On the dimension of the attractor for a class of fluids with pressure dependent viscosities. Communications on Pure & Applied Analysis, 2005, 4 (4) : 805-822. doi: 10.3934/cpaa.2005.4.805 [20] Xueting Tian. Topological pressure for the completely irregular set of birkhoff averages. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2745-2763. doi: 10.3934/dcds.2017118

2020 Impact Factor: 2.425