November  2021, 14(11): 3989-4033. doi: 10.3934/dcdss.2021034

Cahn–Hilliard–Brinkman systems for tumour growth

1. 

Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany

2. 

Department of Mathematics, University of Trento, Trento, Italy

* Corresponding author: Harald Garcke

Received  March 2020 Revised  January 2021 Published  November 2021 Early access  March 2021

A phase field model for tumour growth is introduced that is based on a Brinkman law for convective velocity fields. The model couples a convective Cahn–Hilliard equation for the evolution of the tumour to a reaction-diffusion-advection equation for a nutrient and to a Brinkman–Stokes type law for the fluid velocity. The model is derived from basic thermodynamical principles, sharp interface limits are derived by matched asymptotics and an existence theory is presented for the case of a mobility which degenerates in one phase leading to a degenerate parabolic equation of fourth order. Finally numerical results describe qualitative features of the solutions and illustrate instabilities in certain situations.

Citation: Matthias Ebenbeck, Harald Garcke, Robert Nürnberg. Cahn–Hilliard–Brinkman systems for tumour growth. Discrete & Continuous Dynamical Systems - S, 2021, 14 (11) : 3989-4033. doi: 10.3934/dcdss.2021034
References:
[1]

H. Abels, H. Garcke and G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci., 22 (2012), 1150013. doi: 10.1142/S0218202511500138.  Google Scholar

[2]

A. AgostiP. F. AntoniettiP. CiarlettaM. Grasselli and M. Verani, A Cahn-Hilliard-type equation with application to tumor growth dynamics, Math. Methods Appl. Sci., 40 (2017), 7598-7626.  doi: 10.1002/mma.4548.  Google Scholar

[3]

D. Ambrosi and L. Preziosi, On the closure of mass balance models for tumor growth, Math. Models Methods Appl. Sci., 12 (2002), 737-754.  doi: 10.1142/S0218202502001878.  Google Scholar

[4]

P. R. AmestoyT. A. Davis and I. S. Duff, Algorithm 837: AMD, an approximate minimum degree ordering algorithm, ACM Trans. Math. Software, 30 (2004), 381-388.  doi: 10.1145/1024074.1024081.  Google Scholar

[5]

L. Baňas and R. Nürnberg, Finite element approximation of a three dimensional phase field model for void electromigration, J. Sci. Comp., 37 (2008), 202-232.  doi: 10.1007/s10915-008-9203-y.  Google Scholar

[6]

J. W. Barrett, H. Garcke and R. Nürnberg, Chapter 4 - Parametric finite element approximations of curvature-driven interface evolutions, in Geometric Partial Differential Equations - Part I, Handbook of Numerical Analysis, 21, Elsevier (2020), 275–423. doi: 10.1016/bs.hna.2019.05.002.  Google Scholar

[7]

J. W. BarrettH. Garcke and R. Nürnberg, Stable phase field approximations of anisotropic solidification, IMA J. Numer. Anal., 34 (2014), 1289-1327.  doi: 10.1093/imanum/drt044.  Google Scholar

[8]

J. W. BarrettR. Nürnberg and V. Styles, Finite element approximation of a phase field model for void electromigration, SIAM J. Numer. Anal., 42 (2004), 738-772.  doi: 10.1137/S0036142902413421.  Google Scholar

[9]

N. BellomoN. K. Li and P. K. Maini, On the foundations of cancer modelling: selected topics, speculations, and perspectives, Math. Models Methods Appl. Sci., 18 (2008), 593-646.  doi: 10.1142/S0218202508002796.  Google Scholar

[10]

H. Byrne and M. A. J. Chaplain, Free boundary value problems associated with the growth and development of multicellular spheroids, European J. Appl. Math., 8 (1997), 639-658.  doi: 10.1017/S0956792597003264.  Google Scholar

[11]

P. G. Ciarlet, Mathematical Elasticity. Vol. I. Three-Dimensional Elasticity, North-Holland Publishing Co., Amsterdam, 1988.  Google Scholar

[12]

P. ColliG. Gilardi and D. Hilhorst, On a Cahn–Hilliard type phase field system related to tumor growth, Discrete Contin. Dyn. Syst., 35 (2015), 2423-2442.  doi: 10.3934/dcds.2015.35.2423.  Google Scholar

[13]

V. CristiniH. B. FrieboesR. GatenbyS. CasertaM. Ferrari and J. Sinek, Morphologic instability and cancer invasion, Clin. Cancer Res., 11 (2005), 6772-6779.  doi: 10.1158/1078-0432.CCR-05-0852.  Google Scholar

[14]

V. Cristini, H. B. Frieboes, X. Li, J. S. Lowengrub, P. Macklin, S. Sanga, S. M. Wise and X. Zheng, Nonlinear modeling and simulation of tumor growth, Selected Topics in Cancer Modeling, Birkhäuser Boston, (2008), 113–181.  Google Scholar

[15]

V. CristiniX. LiJ. S. Lowengrub and S. M. Wise, Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching, J. Math. Biol., 58 (2009), 723-763.  doi: 10.1007/s00285-008-0215-x.  Google Scholar

[16] V. Cristini and J. Lowengrub, Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach, Cambridge University Press, Cambridge, 2010.  doi: 10.1017/CBO9780511781452.  Google Scholar
[17]

V. CristiniJ. Lowengrub and Q. Nie, Nonlinear simulation of tumor growth, J. Math. Biol., 46 (2003), 191-224.  doi: 10.1007/s00285-002-0174-6.  Google Scholar

[18]

T. A. Davis, Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software, 30 (2004), 196-199.  doi: 10.1145/992200.992206.  Google Scholar

[19]

T. A. Davis, Algorithm 849: A concise sparse Cholesky factorization package, ACM Trans. Math. Software, 31 (2005), 587-591.  doi: 10.1145/1114268.1114277.  Google Scholar

[20]

M. Ebenbeck, Cahn–Hilliard–Brinkman Models for Tumour Growth: Modelling, Analysis and Optimal Control, Ph.D thesis, University Regensburg, 2020. Google Scholar

[21]

M. Ebenbeck and H. Garcke, Analysis of a Cahn–Hilliard–Brinkman model for tumour growth with chemotaxis, J. Differential Equations, 266 (2019), 5998-6036.  doi: 10.1016/j.jde.2018.10.045.  Google Scholar

[22]

M. Ebenbeck and H. Garcke, On a Cahn–Hilliard–Brinkman model for tumor growth and its singular limits, SIAM J. Math. Anal., 51 (2019), 1868-1912.  doi: 10.1137/18M1228104.  Google Scholar

[23]

C. Eck, H. Garcke and P. Knabner, Mathematical Modeling, Springer, Cham, 2017. doi: 10.1007/978-3-319-55161-6.  Google Scholar

[24]

C. M. Elliott and H. Garcke, On the Cahn–Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), 404-423.  doi: 10.1137/S0036141094267662.  Google Scholar

[25]

J. EylesJ. R. King and V. Styles, A tractable mathematical model for tissue growth, Interfaces Free Bound., 21 (2019), 463-493.  doi: 10.4171/IFB/428.  Google Scholar

[26]

S. J. Franks and J. R. King, Interactions between a uniformly proliferating tumour and its surroundings: Stability analysis for variable material properties, Internat. J. Engrg. Sci., 47 (2009), 1182-1192.  doi: 10.1016/j.ijengsci.2009.07.004.  Google Scholar

[27]

S. J. Franks and J. R. King, Interactions between a uniformly proliferating tumour and its surroundings: Uniform material properties, Math. Med. Biol., 20 (2003), 47-89.  doi: 10.1093/imammb/20.1.47.  Google Scholar

[28]

H. B. FrieboesJ. S. LowengrubS. WiseX. ZhengP. MacklinE. L. Bearer and V. Cristini, Computer simulation of glioma growth and morphology, NeuroImage, 37 (2007), 59-70.  doi: 10.1016/j.neuroimage.2007.03.008.  Google Scholar

[29]

A. Friedman, A free boundary problem for a coupled system of elliptic, hyperbolic, and Stokes equations modeling tumor growth, Interfaces Free Bound., 8 (2006), 247-261.  doi: 10.4171/IFB/142.  Google Scholar

[30]

A. Friedman, Free boundary problems associated with multiscale tumor models, Math. Model. Nat. Phenom., 4 (2009), 134-155. doi: 10.1051/mmnp/20094306.  Google Scholar

[31]

A. Friedman, Mathematical analysis and challenges arising from models of tumor growth, Math. Models Methods Appl. Sci., 17 (2007), 1751-1772.  doi: 10.1142/S0218202507002467.  Google Scholar

[32]

A. Friedmann and B. Hu, Bifurcation for a free boundary problem modeling tumor growth by Stokes equation, SIAM J. Math. Anal., 39 (2007), 174-194.  doi: 10.1137/060656292.  Google Scholar

[33]

S. FrigeriM. Grasselli and E. Rocca, On a diffuse interface model of tumour growth, European J. Appl. Math., 26 (2015), 215-243.  doi: 10.1017/S0956792514000436.  Google Scholar

[34]

S. Frigeri, K. F. Lam and E. Rocca, On a diffuse interface model for tumour growth with non-local interactions and degenerate mobilities, in Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs (Springer INdAM ser.), 22 Springer Cham, (2017), 217–254.  Google Scholar

[35]

M. FritzE. A. B. F. LimaJ. T. Oden and B. Wohlmuth, On the unsteady Darcy–Forchheimer–Brinkman equation in local and nonlocal tumor growth models, Math. Models Methods Appl. Sci., 29 (2019), 1691-1731.  doi: 10.1142/S0218202519500325.  Google Scholar

[36]

H. Garcke and K. F. Lam, Global weak solutions and asymptotic limits of a Cahn–Hilliard–Darcy system modelling tumour growth, AIMS Math., 1 (2016), 318-360. doi: 10.3934/Math.2016.3.318.  Google Scholar

[37]

H. Garcke and K. F. Lam, On a Cahn–Hilliard–Darcy system for tumour growth with solution dependent source terms, Trends in Applications of Mathematics to Mechanics, Springer, Cham 27 (2018), 243–264.  Google Scholar

[38]

H. GarckeK. F. LamR. Nürnberg and E. Sitka, A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis, Math. Models Methods Appl. Sci., 28 (2018), 525-577.  doi: 10.1142/S0218202518500148.  Google Scholar

[39]

H. Garcke, K. F. Lam and A. Signori, On a phase field model of Cahn-Hilliard type for tumour growth with mechanical effects, Nonlinear Anal. Real World Appl., 57 (2021), 103192. doi: 10.1016/j.nonrwa.2020.103192.  Google Scholar

[40]

H. GarckeK. F. LamE. Sitka and V. Styles, A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci., 26 (2016), 1095-1148.  doi: 10.1142/S0218202516500263.  Google Scholar

[41]

H. Garcke and B. Stinner, Second order phase field asymptotics for multi-component systems, Interfaces Free Bound., 8 (2006), 131-157.  doi: 10.4171/IFB/138.  Google Scholar

[42]

Y. Giga and A. Novotný, eds, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, 2018. doi: 10.1007/978-3-319-13344-7.  Google Scholar

[43]

H. P. Greenspan, On the growth and stability of cell cultures and solid tumors, J. Theoret. Biol., 56 (1976), 229-242.  doi: 10.1016/S0022-5193(76)80054-9.  Google Scholar

[44]

M. E. Gurtin, Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance, Phys. D, 92 (1996), 178-192.  doi: 10.1016/0167-2789(95)00173-5.  Google Scholar

[45] M. E. GurtinE. Fried and L. Anand, The Mechanics and Thermodynamics of Continua, Cambridge University Press, Cambridge, 2010.  doi: 10.1017/CBO9780511762956.  Google Scholar
[46]

A. Hawkins-DaarudK. G. van der Zee and J. T. Oden, Numerical simulation of a thermodynamically consistent four-species tumor growth model, Int. J. Numer. Methods Biomed. Eng., 28 (2012), 3-24.  doi: 10.1002/cnm.1467.  Google Scholar

[47]

D. HilhorstJ. KampmannT. N. Nguyen and K. G. van Der Zee, Formal asymptotic limit of a diffuse-interface tumor-growth model, Math. Models Methods Appl. Sci., 25 (2015), 1011-1043.  doi: 10.1142/S0218202515500268.  Google Scholar

[48]

J. JiangH. Wu and S. Zheng, Well-posedness and long-time behavior of a non-autonomous Cahn–Hilliard–Darcy system with mass source modeling, J. Differential Equations, 259 (2015), 3032-3077.  doi: 10.1016/j.jde.2015.04.009.  Google Scholar

[49]

I.-S. Liu, Method of Lagrange multipliers for exploitation of the entropy principle, Arch. Rational Mech. Anal., 46 (1972), 131-148.  doi: 10.1007/BF00250688.  Google Scholar

[50]

J. S. Lowengrub, H. B. Frieboes, F. Jin, Y.-L. Chuang, X. Li, P. Macklin, S. M. Wise and V. Cristini, Nonlinear modelling of cancer: Bridging the gap between cells and tumours, Nonlinearity, 23 (2010), R1–R91. doi: 10.1088/0951-7715/23/1/R01.  Google Scholar

[51]

J. LowengrubE. Titi and K. Zhao, Analysis of a mixture model of tumor growth, European J. Appl. Math., 24 (2013), 691-734.  doi: 10.1017/S0956792513000144.  Google Scholar

[52]

J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn–Hilliard fluids and topological transitions, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454 (1998), 2617-2654.  doi: 10.1098/rspa.1998.0273.  Google Scholar

[53]

P. Macklin and J. Lowengrub, An improved geometry-aware curvature discretization for level set methods: Application to tumor growth, J. Comput. Phys., 215 (2006), 392-401.  doi: 10.1016/j.jcp.2005.11.016.  Google Scholar

[54]

I. Müller, Thermodynamics, Pitman Advanced Publishing Program, London, 1985. Google Scholar

[55]

J. T. OdenA. Hawkins and S. Prudhomme, General diffuse-interface theories and an approach to predictive tumor growth modeling, Math. Models Methods Appl. Sci., 20 (2010), 477-517.  doi: 10.1142/S0218202510004313.  Google Scholar

[56]

B. Perthame and A. Poulain, Relaxation of the Cahn-Hilliard equation with singular single-well potential and degenerate mobility, European J. Appl. Math., 32 (2021), 89-112.  doi: 10.1017/S0956792520000054.  Google Scholar

[57]

K. PhamH. B. FrieboesV. Cristini and J. Lowengrub, Predictions of tumour morphological stability and evaluation against experimental observations, J. R. Soc. Interface, 8 (2011), 16-29.  doi: 10.1098/rsif.2010.0194.  Google Scholar

[58]

E. Rocca and G. Schimperna, Universal attractor for some singular phase transition systems, Phys. D, 192 (2004), 279-307.  doi: 10.1016/j.physd.2004.01.024.  Google Scholar

[59]

T. RooseS. J. Chapman and P. K. Maini, Mathematical models of avascular tumor growth, SIAM Rev., 49 (2007), 179-208.  doi: 10.1137/S0036144504446291.  Google Scholar

[60]

A. Schmidt and K. G. Siebert, Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA, 42, Springer, Berlin, 2005.  Google Scholar

[61]

H. Sohr, The Navier-Stokes equations. An Elementary Functional Analytic Approach, Birkhäuser/Springer, Basel, 2001.  Google Scholar

[62]

S. Srinivasan and K. R. Rajagopal, A thermodynamic basis for the derivation of the Darcy, Forchheimer and Brinkman models for flows through porous media and their generalizations, Internat. J. Non-Linear Mech., 58 (2014), 162-166.  doi: 10.1016/j.ijnonlinmec.2013.09.004.  Google Scholar

[63]

S. M. WiseJ. S. LowengrubH. B. Frieboes and V. Cristini, Three-dimensional multispecies nonlinear tumor growth—I: Model and numerical method, J. Theoret. Biol., 253 (2008), 524-543.  doi: 10.1016/j.jtbi.2008.03.027.  Google Scholar

[64]

J. Wu and S. Cui, Asymptotic behavior of solutions of a free boundary problem modelling the growth of tumors with Stokes equations, Discrete Contin. Dyn. Syst. Ser. A, 24 (2009), 625-651.  doi: 10.3934/dcds.2009.24.625.  Google Scholar

[65]

X. ZhengS. M. Wise and V. Cristini, Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method, Bull. Math. Biol., 67 (2005), 211-259.  doi: 10.1016/j.bulm.2004.08.001.  Google Scholar

show all references

References:
[1]

H. Abels, H. Garcke and G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci., 22 (2012), 1150013. doi: 10.1142/S0218202511500138.  Google Scholar

[2]

A. AgostiP. F. AntoniettiP. CiarlettaM. Grasselli and M. Verani, A Cahn-Hilliard-type equation with application to tumor growth dynamics, Math. Methods Appl. Sci., 40 (2017), 7598-7626.  doi: 10.1002/mma.4548.  Google Scholar

[3]

D. Ambrosi and L. Preziosi, On the closure of mass balance models for tumor growth, Math. Models Methods Appl. Sci., 12 (2002), 737-754.  doi: 10.1142/S0218202502001878.  Google Scholar

[4]

P. R. AmestoyT. A. Davis and I. S. Duff, Algorithm 837: AMD, an approximate minimum degree ordering algorithm, ACM Trans. Math. Software, 30 (2004), 381-388.  doi: 10.1145/1024074.1024081.  Google Scholar

[5]

L. Baňas and R. Nürnberg, Finite element approximation of a three dimensional phase field model for void electromigration, J. Sci. Comp., 37 (2008), 202-232.  doi: 10.1007/s10915-008-9203-y.  Google Scholar

[6]

J. W. Barrett, H. Garcke and R. Nürnberg, Chapter 4 - Parametric finite element approximations of curvature-driven interface evolutions, in Geometric Partial Differential Equations - Part I, Handbook of Numerical Analysis, 21, Elsevier (2020), 275–423. doi: 10.1016/bs.hna.2019.05.002.  Google Scholar

[7]

J. W. BarrettH. Garcke and R. Nürnberg, Stable phase field approximations of anisotropic solidification, IMA J. Numer. Anal., 34 (2014), 1289-1327.  doi: 10.1093/imanum/drt044.  Google Scholar

[8]

J. W. BarrettR. Nürnberg and V. Styles, Finite element approximation of a phase field model for void electromigration, SIAM J. Numer. Anal., 42 (2004), 738-772.  doi: 10.1137/S0036142902413421.  Google Scholar

[9]

N. BellomoN. K. Li and P. K. Maini, On the foundations of cancer modelling: selected topics, speculations, and perspectives, Math. Models Methods Appl. Sci., 18 (2008), 593-646.  doi: 10.1142/S0218202508002796.  Google Scholar

[10]

H. Byrne and M. A. J. Chaplain, Free boundary value problems associated with the growth and development of multicellular spheroids, European J. Appl. Math., 8 (1997), 639-658.  doi: 10.1017/S0956792597003264.  Google Scholar

[11]

P. G. Ciarlet, Mathematical Elasticity. Vol. I. Three-Dimensional Elasticity, North-Holland Publishing Co., Amsterdam, 1988.  Google Scholar

[12]

P. ColliG. Gilardi and D. Hilhorst, On a Cahn–Hilliard type phase field system related to tumor growth, Discrete Contin. Dyn. Syst., 35 (2015), 2423-2442.  doi: 10.3934/dcds.2015.35.2423.  Google Scholar

[13]

V. CristiniH. B. FrieboesR. GatenbyS. CasertaM. Ferrari and J. Sinek, Morphologic instability and cancer invasion, Clin. Cancer Res., 11 (2005), 6772-6779.  doi: 10.1158/1078-0432.CCR-05-0852.  Google Scholar

[14]

V. Cristini, H. B. Frieboes, X. Li, J. S. Lowengrub, P. Macklin, S. Sanga, S. M. Wise and X. Zheng, Nonlinear modeling and simulation of tumor growth, Selected Topics in Cancer Modeling, Birkhäuser Boston, (2008), 113–181.  Google Scholar

[15]

V. CristiniX. LiJ. S. Lowengrub and S. M. Wise, Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching, J. Math. Biol., 58 (2009), 723-763.  doi: 10.1007/s00285-008-0215-x.  Google Scholar

[16] V. Cristini and J. Lowengrub, Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach, Cambridge University Press, Cambridge, 2010.  doi: 10.1017/CBO9780511781452.  Google Scholar
[17]

V. CristiniJ. Lowengrub and Q. Nie, Nonlinear simulation of tumor growth, J. Math. Biol., 46 (2003), 191-224.  doi: 10.1007/s00285-002-0174-6.  Google Scholar

[18]

T. A. Davis, Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software, 30 (2004), 196-199.  doi: 10.1145/992200.992206.  Google Scholar

[19]

T. A. Davis, Algorithm 849: A concise sparse Cholesky factorization package, ACM Trans. Math. Software, 31 (2005), 587-591.  doi: 10.1145/1114268.1114277.  Google Scholar

[20]

M. Ebenbeck, Cahn–Hilliard–Brinkman Models for Tumour Growth: Modelling, Analysis and Optimal Control, Ph.D thesis, University Regensburg, 2020. Google Scholar

[21]

M. Ebenbeck and H. Garcke, Analysis of a Cahn–Hilliard–Brinkman model for tumour growth with chemotaxis, J. Differential Equations, 266 (2019), 5998-6036.  doi: 10.1016/j.jde.2018.10.045.  Google Scholar

[22]

M. Ebenbeck and H. Garcke, On a Cahn–Hilliard–Brinkman model for tumor growth and its singular limits, SIAM J. Math. Anal., 51 (2019), 1868-1912.  doi: 10.1137/18M1228104.  Google Scholar

[23]

C. Eck, H. Garcke and P. Knabner, Mathematical Modeling, Springer, Cham, 2017. doi: 10.1007/978-3-319-55161-6.  Google Scholar

[24]

C. M. Elliott and H. Garcke, On the Cahn–Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), 404-423.  doi: 10.1137/S0036141094267662.  Google Scholar

[25]

J. EylesJ. R. King and V. Styles, A tractable mathematical model for tissue growth, Interfaces Free Bound., 21 (2019), 463-493.  doi: 10.4171/IFB/428.  Google Scholar

[26]

S. J. Franks and J. R. King, Interactions between a uniformly proliferating tumour and its surroundings: Stability analysis for variable material properties, Internat. J. Engrg. Sci., 47 (2009), 1182-1192.  doi: 10.1016/j.ijengsci.2009.07.004.  Google Scholar

[27]

S. J. Franks and J. R. King, Interactions between a uniformly proliferating tumour and its surroundings: Uniform material properties, Math. Med. Biol., 20 (2003), 47-89.  doi: 10.1093/imammb/20.1.47.  Google Scholar

[28]

H. B. FrieboesJ. S. LowengrubS. WiseX. ZhengP. MacklinE. L. Bearer and V. Cristini, Computer simulation of glioma growth and morphology, NeuroImage, 37 (2007), 59-70.  doi: 10.1016/j.neuroimage.2007.03.008.  Google Scholar

[29]

A. Friedman, A free boundary problem for a coupled system of elliptic, hyperbolic, and Stokes equations modeling tumor growth, Interfaces Free Bound., 8 (2006), 247-261.  doi: 10.4171/IFB/142.  Google Scholar

[30]

A. Friedman, Free boundary problems associated with multiscale tumor models, Math. Model. Nat. Phenom., 4 (2009), 134-155. doi: 10.1051/mmnp/20094306.  Google Scholar

[31]

A. Friedman, Mathematical analysis and challenges arising from models of tumor growth, Math. Models Methods Appl. Sci., 17 (2007), 1751-1772.  doi: 10.1142/S0218202507002467.  Google Scholar

[32]

A. Friedmann and B. Hu, Bifurcation for a free boundary problem modeling tumor growth by Stokes equation, SIAM J. Math. Anal., 39 (2007), 174-194.  doi: 10.1137/060656292.  Google Scholar

[33]

S. FrigeriM. Grasselli and E. Rocca, On a diffuse interface model of tumour growth, European J. Appl. Math., 26 (2015), 215-243.  doi: 10.1017/S0956792514000436.  Google Scholar

[34]

S. Frigeri, K. F. Lam and E. Rocca, On a diffuse interface model for tumour growth with non-local interactions and degenerate mobilities, in Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs (Springer INdAM ser.), 22 Springer Cham, (2017), 217–254.  Google Scholar

[35]

M. FritzE. A. B. F. LimaJ. T. Oden and B. Wohlmuth, On the unsteady Darcy–Forchheimer–Brinkman equation in local and nonlocal tumor growth models, Math. Models Methods Appl. Sci., 29 (2019), 1691-1731.  doi: 10.1142/S0218202519500325.  Google Scholar

[36]

H. Garcke and K. F. Lam, Global weak solutions and asymptotic limits of a Cahn–Hilliard–Darcy system modelling tumour growth, AIMS Math., 1 (2016), 318-360. doi: 10.3934/Math.2016.3.318.  Google Scholar

[37]

H. Garcke and K. F. Lam, On a Cahn–Hilliard–Darcy system for tumour growth with solution dependent source terms, Trends in Applications of Mathematics to Mechanics, Springer, Cham 27 (2018), 243–264.  Google Scholar

[38]

H. GarckeK. F. LamR. Nürnberg and E. Sitka, A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis, Math. Models Methods Appl. Sci., 28 (2018), 525-577.  doi: 10.1142/S0218202518500148.  Google Scholar

[39]

H. Garcke, K. F. Lam and A. Signori, On a phase field model of Cahn-Hilliard type for tumour growth with mechanical effects, Nonlinear Anal. Real World Appl., 57 (2021), 103192. doi: 10.1016/j.nonrwa.2020.103192.  Google Scholar

[40]

H. GarckeK. F. LamE. Sitka and V. Styles, A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci., 26 (2016), 1095-1148.  doi: 10.1142/S0218202516500263.  Google Scholar

[41]

H. Garcke and B. Stinner, Second order phase field asymptotics for multi-component systems, Interfaces Free Bound., 8 (2006), 131-157.  doi: 10.4171/IFB/138.  Google Scholar

[42]

Y. Giga and A. Novotný, eds, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, 2018. doi: 10.1007/978-3-319-13344-7.  Google Scholar

[43]

H. P. Greenspan, On the growth and stability of cell cultures and solid tumors, J. Theoret. Biol., 56 (1976), 229-242.  doi: 10.1016/S0022-5193(76)80054-9.  Google Scholar

[44]

M. E. Gurtin, Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance, Phys. D, 92 (1996), 178-192.  doi: 10.1016/0167-2789(95)00173-5.  Google Scholar

[45] M. E. GurtinE. Fried and L. Anand, The Mechanics and Thermodynamics of Continua, Cambridge University Press, Cambridge, 2010.  doi: 10.1017/CBO9780511762956.  Google Scholar
[46]

A. Hawkins-DaarudK. G. van der Zee and J. T. Oden, Numerical simulation of a thermodynamically consistent four-species tumor growth model, Int. J. Numer. Methods Biomed. Eng., 28 (2012), 3-24.  doi: 10.1002/cnm.1467.  Google Scholar

[47]

D. HilhorstJ. KampmannT. N. Nguyen and K. G. van Der Zee, Formal asymptotic limit of a diffuse-interface tumor-growth model, Math. Models Methods Appl. Sci., 25 (2015), 1011-1043.  doi: 10.1142/S0218202515500268.  Google Scholar

[48]

J. JiangH. Wu and S. Zheng, Well-posedness and long-time behavior of a non-autonomous Cahn–Hilliard–Darcy system with mass source modeling, J. Differential Equations, 259 (2015), 3032-3077.  doi: 10.1016/j.jde.2015.04.009.  Google Scholar

[49]

I.-S. Liu, Method of Lagrange multipliers for exploitation of the entropy principle, Arch. Rational Mech. Anal., 46 (1972), 131-148.  doi: 10.1007/BF00250688.  Google Scholar

[50]

J. S. Lowengrub, H. B. Frieboes, F. Jin, Y.-L. Chuang, X. Li, P. Macklin, S. M. Wise and V. Cristini, Nonlinear modelling of cancer: Bridging the gap between cells and tumours, Nonlinearity, 23 (2010), R1–R91. doi: 10.1088/0951-7715/23/1/R01.  Google Scholar

[51]

J. LowengrubE. Titi and K. Zhao, Analysis of a mixture model of tumor growth, European J. Appl. Math., 24 (2013), 691-734.  doi: 10.1017/S0956792513000144.  Google Scholar

[52]

J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn–Hilliard fluids and topological transitions, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454 (1998), 2617-2654.  doi: 10.1098/rspa.1998.0273.  Google Scholar

[53]

P. Macklin and J. Lowengrub, An improved geometry-aware curvature discretization for level set methods: Application to tumor growth, J. Comput. Phys., 215 (2006), 392-401.  doi: 10.1016/j.jcp.2005.11.016.  Google Scholar

[54]

I. Müller, Thermodynamics, Pitman Advanced Publishing Program, London, 1985. Google Scholar

[55]

J. T. OdenA. Hawkins and S. Prudhomme, General diffuse-interface theories and an approach to predictive tumor growth modeling, Math. Models Methods Appl. Sci., 20 (2010), 477-517.  doi: 10.1142/S0218202510004313.  Google Scholar

[56]

B. Perthame and A. Poulain, Relaxation of the Cahn-Hilliard equation with singular single-well potential and degenerate mobility, European J. Appl. Math., 32 (2021), 89-112.  doi: 10.1017/S0956792520000054.  Google Scholar

[57]

K. PhamH. B. FrieboesV. Cristini and J. Lowengrub, Predictions of tumour morphological stability and evaluation against experimental observations, J. R. Soc. Interface, 8 (2011), 16-29.  doi: 10.1098/rsif.2010.0194.  Google Scholar

[58]

E. Rocca and G. Schimperna, Universal attractor for some singular phase transition systems, Phys. D, 192 (2004), 279-307.  doi: 10.1016/j.physd.2004.01.024.  Google Scholar

[59]

T. RooseS. J. Chapman and P. K. Maini, Mathematical models of avascular tumor growth, SIAM Rev., 49 (2007), 179-208.  doi: 10.1137/S0036144504446291.  Google Scholar

[60]

A. Schmidt and K. G. Siebert, Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA, 42, Springer, Berlin, 2005.  Google Scholar

[61]

H. Sohr, The Navier-Stokes equations. An Elementary Functional Analytic Approach, Birkhäuser/Springer, Basel, 2001.  Google Scholar

[62]

S. Srinivasan and K. R. Rajagopal, A thermodynamic basis for the derivation of the Darcy, Forchheimer and Brinkman models for flows through porous media and their generalizations, Internat. J. Non-Linear Mech., 58 (2014), 162-166.  doi: 10.1016/j.ijnonlinmec.2013.09.004.  Google Scholar

[63]

S. M. WiseJ. S. LowengrubH. B. Frieboes and V. Cristini, Three-dimensional multispecies nonlinear tumor growth—I: Model and numerical method, J. Theoret. Biol., 253 (2008), 524-543.  doi: 10.1016/j.jtbi.2008.03.027.  Google Scholar

[64]

J. Wu and S. Cui, Asymptotic behavior of solutions of a free boundary problem modelling the growth of tumors with Stokes equations, Discrete Contin. Dyn. Syst. Ser. A, 24 (2009), 625-651.  doi: 10.3934/dcds.2009.24.625.  Google Scholar

[65]

X. ZhengS. M. Wise and V. Cristini, Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method, Bull. Math. Biol., 67 (2005), 211-259.  doi: 10.1016/j.bulm.2004.08.001.  Google Scholar

Figure 1.  Typical situation for the formal asymptotic analysis
Figure 2.  The tumour and healthy regions $ \Omega_T $ and $ \Omega_H $
Figure 3.  Schematic sketch of the inner region close to $ \Sigma(0) $
Figure 4.  Initial tumour size for initial data $ r $: A slightly perturbed sphere
Figure 5.  Comparison of Cahn--Hilliard--Darcy and Cahn--Hilliard--Brinkman models: Tumour at time $ t = 12 $ for $ \beta = 0.1 $, left side for the CHD model, right side for the CHB model with $ \eta = 10^{-5} $
Figure 6.  Influence of different mobilities: Tumour at time $ t = 9 $ for $ \eta = 10^{-5} $, $ \beta = 0.1 $ and $ \alpha = \rho_S = 2 $, but with different mobilities, left $ m(\varphi) = \frac{1}{2}(1+\varphi)^2 $, middle $ m(\varphi) = \epsilon $, right $ m(\varphi) = 10^{-3}\epsilon $
Figure 7.  Influence of the adhesion parameter $ \beta $: Evolution of the tumour with $ m(\varphi) = \tfrac{1}{2}(1+\varphi)^2 $ and $ \eta = 0.1 $, above for $ \beta = 0.1 $ at time $ t = 1, 3, 6, 10 $, below for $ \beta = 0.01 $ at time $ t = 1, 1.5, 2, 2.5 $
Figure 8.  Influence of viscosiy I: Tumour and velocity for $ \beta = 0.01 $ at time $ t = 2.5 $, left for $ \eta = 0.1 $, right for $ \eta = 100 $, on top the tumour and below the velocity magnitude
Figure 9.  Influence of viscosity II: Evolution of the tumour at time $ t = 1, 3, 6, 10 $ with $ \beta = 0.1 $, $ \nu = 0 $ and a no-slip boundary condition on the left boundary, on top for $ \eta = 0.1 $ and below for $ \eta = 10 $
Figure 10.  Velocity profiles for different viscosities: The velocity magnitude at time $ t = 10 $ with $ \beta = 0.1 $, $ \nu = 0 $ and a no-slip boundary condition on the left boundary, left for $ \eta = 0.1 $, right for $ \eta = 10 $
Figure 11.  Influence of viscosity contrast: Tumour at time $ t = 10 $ with $ \beta = 0.1 $, $ \nu = 0 $ and a no-slip b. c. on the left boundary, with $ \eta_- = 0.01 $, $ \eta_+ = 1 $; $ \eta_- = 1 $, $ \eta_+ = 0.01 $; $ \eta_- = 0.01 $, $ \eta_+ = 10 $; $ \eta_- = 10 $, $ \eta_+ = 0.01 $
Figure 12.  Influence of initial profile I: Tumour at time $ t = 0, 0.3, 1, 1.6 $ with $ \eta = 100 $ and with the initial profile corresponding to $ r_1 $
Figure 13.  Influence of initial profile II: Tumour at time $ t = 0, 0.7, 1.2, 2.6 $ with $ \eta = 100 $ and with the initial profile corresponding to $ r_2 $
Figure 14.  Influence of initial profile III: Tumour at time $ t = 0, 0.5, 1.2, 2.4 $ with $ \eta = 100 $ and with the initial profile corresponding to $ r_3 $
Figure 15.  Influence of initial profile IV: Tumour at time $ t = 0, 0.3, 1.3, 2.3 $ with $ \eta = 0.01 $ and with the initial profile corresponding to $ r_4 $
[1]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

[2]

Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423

[3]

Andrea Signori. Optimal treatment for a phase field system of Cahn-Hilliard type modeling tumor growth by asymptotic scheme. Mathematical Control & Related Fields, 2020, 10 (2) : 305-331. doi: 10.3934/mcrf.2019040

[4]

Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, Jürgen Sprekels. Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modelling tumor growth. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 37-54. doi: 10.3934/dcdss.2017002

[5]

Monica Conti, Stefania Gatti, Alain Miranville. A singular cahn-hilliard-oono phase-field system with hereditary memory. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 3033-3054. doi: 10.3934/dcds.2018132

[6]

Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations & Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517

[7]

Elisabeth Logak, Chao Wang. The singular limit of a haptotaxis model with bistable growth. Communications on Pure & Applied Analysis, 2012, 11 (1) : 209-228. doi: 10.3934/cpaa.2012.11.209

[8]

John R. King, Judith Pérez-Velázquez, H.M. Byrne. Singular travelling waves in a model for tumour encapsulation. Discrete & Continuous Dynamical Systems, 2009, 25 (1) : 195-230. doi: 10.3934/dcds.2009.25.195

[9]

A. Jiménez-Casas. Invariant regions and global existence for a phase field model. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 273-281. doi: 10.3934/dcdss.2008.1.273

[10]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[11]

Nguyen Huy Tuan. Existence and limit problem for fractional fourth order subdiffusion equation and Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4551-4574. doi: 10.3934/dcdss.2021113

[12]

Leonid Berlyand, Mykhailo Potomkin, Volodymyr Rybalko. Sharp interface limit in a phase field model of cell motility. Networks & Heterogeneous Media, 2017, 12 (4) : 551-590. doi: 10.3934/nhm.2017023

[13]

Maciek D. Korzec, Hao Wu. Analysis and simulation for an isotropic phase-field model describing grain growth. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2227-2246. doi: 10.3934/dcdsb.2014.19.2227

[14]

Kelei Wang. The singular limit problem in a phase separation model with different diffusion rates $^*$. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 483-512. doi: 10.3934/dcds.2015.35.483

[15]

Honghu Liu. Phase transitions of a phase field model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883

[16]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[17]

T. Tachim Medjo. A Cahn-Hilliard-Navier-Stokes model with delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2663-2685. doi: 10.3934/dcdsb.2016067

[18]

Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275

[19]

Xinfu Chen, G. Caginalp, Christof Eck. A rapidly converging phase field model. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1017-1034. doi: 10.3934/dcds.2006.15.1017

[20]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (243)
  • HTML views (371)
  • Cited by (0)

[Back to Top]