• Previous Article
    Data-driven control of hydraulic servo actuator based on adaptive dynamic programming
  • DCDS-S Home
  • This Issue
  • Next Article
    Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays
doi: 10.3934/dcdss.2021087
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Recovering the initial condition in the one-phase Stefan problem

1. 

Faculty of Sciences of Tunis 2092, University of Tunis El Manar, Tunis, Tunisia

2. 

Laboratoire Jean Kuntzmann, UMR CNRS 5224, Université Grenoble-Alpes, 700 Avenue Centrale, 38401 Saint-Martin-d'Hères, France

* Corresponding author: C. Ghanmi

Received  March 2021 Revised  May 2021 Early access July 2021

Fund Project: The work of F. Triki is supported in part by the grant ANR-17-CE40-0029 of the French National Research Agency ANR (project MultiOnde)

We consider the problem of recovering the initial condition in the one-dimensional one-phase Stefan problem for the heat equation from the knowledge of the position of the melting point. We first recall some properties of the free boundary solution. Then we study the uniqueness and stability of the inversion. The principal contribution of the paper is a new logarithmic type stability estimate that shows that the inversion may be severely ill-posed. The proof is based on integral equations representation techniques, and the unique continuation property for parabolic type solutions. We also present few numerical examples operating with noisy synthetic data.

Citation: Chifaa Ghanmi, Saloua Mani Aouadi, Faouzi Triki. Recovering the initial condition in the one-phase Stefan problem. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021087
References:
[1]

K. AmmariA. Bchatnia and K. El Mufti, A remark on observability of the wave equation with moving boundary, J. Appl. Anal., 23 (2017), 43-51.  doi: 10.1515/jaa-2017-0007.  Google Scholar

[2]

K. Ammari and F. Triki, On weak observability for evolution systems with skew-adjoint generators, SIAM J. Math. Anal., 52 (2020), 1884-1902.  doi: 10.1137/19M1241830.  Google Scholar

[3]

G. Bruckner and J. Cheng, Tikhonov regularization for an integral equation of the first kind with logarithmic kernel, J. Inverse Ill-Posed Probl., 8 (2000), 665-675.  doi: 10.1515/jiip.2000.8.6.665.  Google Scholar

[4]

J. R. Cannon and J. Douglas Jr., The Cauchy problem for the heat equation, SIAM J. Numer. Anal., 4 (1967), 317-336.  doi: 10.1137/0704028.  Google Scholar

[5]

J. R. Cannon and J. Douglas Jr., The stability of the boundary in a Stefan problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 21 (1967), 83-91.   Google Scholar

[6]

J. R. Cannon and C. D. Hill, Existence, uniqueness, stability, and monotone dependence in a Stefan problem for the heat equation, J. Math. Mech., 17 (1967), 1-19.  doi: 10.1512/iumj.1968.17.17001.  Google Scholar

[7]

J. R. Cannon and M. Primicerio, Remarks on the one-phase Stefan problem for the heat equation with the flux prescribed on the fixed boundary, J. Math. Anal. Appl., 35 (1971), 361-373.  doi: 10.1016/0022-247X(71)90223-X.  Google Scholar

[8]

M. Choulli, Various stability estimates for the problem of determining an initial heat distribution from a single measurement, Riv. Math. Univ. Parma (N.S.), 7 (2016), 279-307.   Google Scholar

[9]

M. Choulli and M. Yamamoto, Logarithmic stability of parabolic Cauchy problems, preprint, arXiv: 1702.06299v4. Google Scholar

[10]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Mathematics and its Applications, 375, Kluwer Academic Publishers Group, Dordrecht, 1996.  Google Scholar

[11]

E. Fernández-CaraF. Hernández and J. Límaco, Local null controllability of a 1D Stefan problem, Bull. Braz. Math. Soc. (N.S.), 50 (2019), 745-769.  doi: 10.1007/s00574-018-0093-9.  Google Scholar

[12]

E. Fernández-CaraJ. Limaco and S. B. de Menezes, On the controllability of a free-boundary problem for the 1D heat equation, Systems Control Lett., 87 (2016), 29-35.  doi: 10.1016/j.sysconle.2015.10.011.  Google Scholar

[13]

A. Friedman, Variational Principles and Free Boundary Problems, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1982.  Google Scholar

[14]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1964.  Google Scholar

[15]

G. C. GarciaA. Osses and M. Tapia, A heat source reconstruction formula from single internal measurements using a family of null controls, J. Inverse Ill-Posed Probl., 21 (2013), 755-779.  doi: 10.1515/jip-2011-0001.  Google Scholar

[16]

B. Geshkovski and E. Zuazua, Controllability of one-dimensional viscous free boundary flows, SIAM J. Control Optim., 59 (2021), 1830-1850.  doi: 10.1137/19M1285354.  Google Scholar

[17]

C. Ghanmi, S. Mani-Aouadi and F. Triki, Identification of a Boundary Influx Condition in A One-Phase Stefan Problem, Appl. Anal., to appear. Google Scholar

[18]

N. L Gol'dman, Inverse Stefan Problems, Springer Science & Business Media, 2012. Google Scholar

[19]

A. HajiollowY. LotfiK. ParandA. H. HadianK. Rashedi and J. A. Rad, Recovering a moving boundary from Cauchy data in an inverse problem which arises in modeling brain tumor treatment: The (quasi) linearization idea combined with radial basis functions (RBFs) approximation, Engineering with Computers, 37 (2021), 1735-1749.  doi: 10.1007/s00366-019-00909-8.  Google Scholar

[20]

M. HankeA. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math., 72 (1995), 21-37.  doi: 10.1007/s002110050158.  Google Scholar

[21]

P. Jochum, The numerical solution of the inverse Stefan problem, Numer. Math., 34 (1980), 411-429.  doi: 10.1007/BF01403678.  Google Scholar

[22]

B. T. JohanssonD. Lesnic and T. Reeve, A method of fundamental solutions for the one-dimensional inverse Stefan problem, Appl. Math. Model., 35 (2011), 4367-4378.  doi: 10.1016/j.apm.2011.03.005.  Google Scholar

[23]

P. Knabner, Control of Stefan problems by means of linear-quadratic defect minimization, Numer. Math., 46 (1985), 429-442.  doi: 10.1007/BF01389495.  Google Scholar

[24]

W. T. Kyner, An existence and uniqueness theorem for a nonlinear Stefan problem, J. Math. Mech., 8 (1959), 483-498.  doi: 10.1512/iumj.1959.8.58035.  Google Scholar

[25]

O. A. Ladyzhenskaia, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Soc., 1968. Google Scholar

[26]

L. Landweber, An iteration formula for Fredholm integral equations of the first kind, Amer. J. Math., 73 (1951), 615-624.  doi: 10.2307/2372313.  Google Scholar

[27]

J. LiM. Yamamoto and J. Zou, Conditional stability and numerical reconstruction of initial temperature, Commun. Pure Appl. Anal., 8 (2009), 361-382.  doi: 10.3934/cpaa.2009.8.361.  Google Scholar

[28]

R. Nevanlinna, H. Behnke, L. V. Grauert, H. Ahlfors, D. C. Spencer, L. Bers, K. Kodaira, M. Heins and J. A. Jenkins, Analytic Functions, Berlin, Springer, 1970. Google Scholar

[29]

R. Reemtsen and A. Kirsch, A method for the numerical solution of the one-dimensional inverse Stefan problem, Numer. Math., 45 (1984), 253-273.  doi: 10.1007/BF01389470.  Google Scholar

[30]

L. I. Rubenšteǐn, The Stefan Problem, Translations of Mathematical Monographs, 27, American Mathematical Society, Providence, RI, 1971.  Google Scholar

[31]

W. Rudin, Real and Complex Analysis, 2$^{nd}$ edition, McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974.  Google Scholar

[32]

T. Wei and M. Yamamoto, Reconstruction of a moving boundary from Cauchy data in one-dimensional heat equation, Inverse Probl. Sci. Eng., 17 (2009), 551-567.  doi: 10.1080/17415970802231610.  Google Scholar

[33]

L. C. Wrobel, A boundary element solution to Stefan's problem, Boundary Elements V, (1983). Google Scholar

show all references

References:
[1]

K. AmmariA. Bchatnia and K. El Mufti, A remark on observability of the wave equation with moving boundary, J. Appl. Anal., 23 (2017), 43-51.  doi: 10.1515/jaa-2017-0007.  Google Scholar

[2]

K. Ammari and F. Triki, On weak observability for evolution systems with skew-adjoint generators, SIAM J. Math. Anal., 52 (2020), 1884-1902.  doi: 10.1137/19M1241830.  Google Scholar

[3]

G. Bruckner and J. Cheng, Tikhonov regularization for an integral equation of the first kind with logarithmic kernel, J. Inverse Ill-Posed Probl., 8 (2000), 665-675.  doi: 10.1515/jiip.2000.8.6.665.  Google Scholar

[4]

J. R. Cannon and J. Douglas Jr., The Cauchy problem for the heat equation, SIAM J. Numer. Anal., 4 (1967), 317-336.  doi: 10.1137/0704028.  Google Scholar

[5]

J. R. Cannon and J. Douglas Jr., The stability of the boundary in a Stefan problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 21 (1967), 83-91.   Google Scholar

[6]

J. R. Cannon and C. D. Hill, Existence, uniqueness, stability, and monotone dependence in a Stefan problem for the heat equation, J. Math. Mech., 17 (1967), 1-19.  doi: 10.1512/iumj.1968.17.17001.  Google Scholar

[7]

J. R. Cannon and M. Primicerio, Remarks on the one-phase Stefan problem for the heat equation with the flux prescribed on the fixed boundary, J. Math. Anal. Appl., 35 (1971), 361-373.  doi: 10.1016/0022-247X(71)90223-X.  Google Scholar

[8]

M. Choulli, Various stability estimates for the problem of determining an initial heat distribution from a single measurement, Riv. Math. Univ. Parma (N.S.), 7 (2016), 279-307.   Google Scholar

[9]

M. Choulli and M. Yamamoto, Logarithmic stability of parabolic Cauchy problems, preprint, arXiv: 1702.06299v4. Google Scholar

[10]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Mathematics and its Applications, 375, Kluwer Academic Publishers Group, Dordrecht, 1996.  Google Scholar

[11]

E. Fernández-CaraF. Hernández and J. Límaco, Local null controllability of a 1D Stefan problem, Bull. Braz. Math. Soc. (N.S.), 50 (2019), 745-769.  doi: 10.1007/s00574-018-0093-9.  Google Scholar

[12]

E. Fernández-CaraJ. Limaco and S. B. de Menezes, On the controllability of a free-boundary problem for the 1D heat equation, Systems Control Lett., 87 (2016), 29-35.  doi: 10.1016/j.sysconle.2015.10.011.  Google Scholar

[13]

A. Friedman, Variational Principles and Free Boundary Problems, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1982.  Google Scholar

[14]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1964.  Google Scholar

[15]

G. C. GarciaA. Osses and M. Tapia, A heat source reconstruction formula from single internal measurements using a family of null controls, J. Inverse Ill-Posed Probl., 21 (2013), 755-779.  doi: 10.1515/jip-2011-0001.  Google Scholar

[16]

B. Geshkovski and E. Zuazua, Controllability of one-dimensional viscous free boundary flows, SIAM J. Control Optim., 59 (2021), 1830-1850.  doi: 10.1137/19M1285354.  Google Scholar

[17]

C. Ghanmi, S. Mani-Aouadi and F. Triki, Identification of a Boundary Influx Condition in A One-Phase Stefan Problem, Appl. Anal., to appear. Google Scholar

[18]

N. L Gol'dman, Inverse Stefan Problems, Springer Science & Business Media, 2012. Google Scholar

[19]

A. HajiollowY. LotfiK. ParandA. H. HadianK. Rashedi and J. A. Rad, Recovering a moving boundary from Cauchy data in an inverse problem which arises in modeling brain tumor treatment: The (quasi) linearization idea combined with radial basis functions (RBFs) approximation, Engineering with Computers, 37 (2021), 1735-1749.  doi: 10.1007/s00366-019-00909-8.  Google Scholar

[20]

M. HankeA. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math., 72 (1995), 21-37.  doi: 10.1007/s002110050158.  Google Scholar

[21]

P. Jochum, The numerical solution of the inverse Stefan problem, Numer. Math., 34 (1980), 411-429.  doi: 10.1007/BF01403678.  Google Scholar

[22]

B. T. JohanssonD. Lesnic and T. Reeve, A method of fundamental solutions for the one-dimensional inverse Stefan problem, Appl. Math. Model., 35 (2011), 4367-4378.  doi: 10.1016/j.apm.2011.03.005.  Google Scholar

[23]

P. Knabner, Control of Stefan problems by means of linear-quadratic defect minimization, Numer. Math., 46 (1985), 429-442.  doi: 10.1007/BF01389495.  Google Scholar

[24]

W. T. Kyner, An existence and uniqueness theorem for a nonlinear Stefan problem, J. Math. Mech., 8 (1959), 483-498.  doi: 10.1512/iumj.1959.8.58035.  Google Scholar

[25]

O. A. Ladyzhenskaia, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Soc., 1968. Google Scholar

[26]

L. Landweber, An iteration formula for Fredholm integral equations of the first kind, Amer. J. Math., 73 (1951), 615-624.  doi: 10.2307/2372313.  Google Scholar

[27]

J. LiM. Yamamoto and J. Zou, Conditional stability and numerical reconstruction of initial temperature, Commun. Pure Appl. Anal., 8 (2009), 361-382.  doi: 10.3934/cpaa.2009.8.361.  Google Scholar

[28]

R. Nevanlinna, H. Behnke, L. V. Grauert, H. Ahlfors, D. C. Spencer, L. Bers, K. Kodaira, M. Heins and J. A. Jenkins, Analytic Functions, Berlin, Springer, 1970. Google Scholar

[29]

R. Reemtsen and A. Kirsch, A method for the numerical solution of the one-dimensional inverse Stefan problem, Numer. Math., 45 (1984), 253-273.  doi: 10.1007/BF01389470.  Google Scholar

[30]

L. I. Rubenšteǐn, The Stefan Problem, Translations of Mathematical Monographs, 27, American Mathematical Society, Providence, RI, 1971.  Google Scholar

[31]

W. Rudin, Real and Complex Analysis, 2$^{nd}$ edition, McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974.  Google Scholar

[32]

T. Wei and M. Yamamoto, Reconstruction of a moving boundary from Cauchy data in one-dimensional heat equation, Inverse Probl. Sci. Eng., 17 (2009), 551-567.  doi: 10.1080/17415970802231610.  Google Scholar

[33]

L. C. Wrobel, A boundary element solution to Stefan's problem, Boundary Elements V, (1983). Google Scholar

Figure 1.  The exact initial condition $ u_0(x) $ and approximate solution with different Gaussian noise levels obtained with $ \lambda = 10^{-3} $, $ M = 250 $ using Tikhonov Regularization method
Figure 2.  The exact initial condition $ u_0(x) $ and approximate solution with different Gaussian noise levels obtained with $ M = 250 $ using Landweber method
Figure 3.  The exact initial condition $ u_0(x) $ and the approximate solution with different Gaussian noise levels obtained with $ \lambda = 10^{-2} $, $ M = 250 $ using Tikhonov method
Figure 4.  The exact initial condition $ u_0(x) $ and approximate solution with different Gaussian noise levels obtained with $ M = 250 $ using Landweber method
Figure 5.  The initial condition $ u_0(x) $ and approximate solution with different Gaussian noise levels obtained with $ \lambda = 10^{-3} $ and $ M = 250 $ using Tikhonov method
Figure 6.  The initial condition $ u_0(x) $ and approximate solution with different Gaussian noise levels obtained with $ M = 250 $ using Landweber method
Table 1.  Relative errors using Tikhonov method
$ \lambda $ Noise on $ s(t) $ ($ \% $) $ \frac{||{u_0-U_0}||_2}{||{u_0}||_2} $
$ 10^{-3} $ 0 $ \% $ 0.0425
$ 10^{-3} $ 1 $ \% $ 0.0472
$ 10^{-3} $ 2 $ \% $ 0.0571
$ 10^{-3} $ 3 $ \% $ 0.0669
$ \lambda $ Noise on $ s(t) $ ($ \% $) $ \frac{||{u_0-U_0}||_2}{||{u_0}||_2} $
$ 10^{-3} $ 0 $ \% $ 0.0425
$ 10^{-3} $ 1 $ \% $ 0.0472
$ 10^{-3} $ 2 $ \% $ 0.0571
$ 10^{-3} $ 3 $ \% $ 0.0669
Table 2.  Relative errors using Landweber method
Noise on $ s(t) $ ($ \% $) $ \frac{||{u_0-U_0}||_2}{||{u_0}||_2} $
0 $ \% $ 0.0846
1 $ \% $ 0.0917
2 $ \% $ 0.1026
3 $ \% $ 0.1115
Noise on $ s(t) $ ($ \% $) $ \frac{||{u_0-U_0}||_2}{||{u_0}||_2} $
0 $ \% $ 0.0846
1 $ \% $ 0.0917
2 $ \% $ 0.1026
3 $ \% $ 0.1115
Table 3.  Relative errors using Tikhonov method
$ \lambda $ Noise on $ s(t) $ ($ \% $) $ \frac{||{u_0-U_0}||_2}{||{u_0}||_2} $
$ 10^{-2} $ 0 $ \% $ 0.0953
$ 10^{-2} $ 1 $ \% $ 0.0997
$ 10^{-2} $ 2 $ \% $ 0.1082
$ 10^{-2} $ 3 $ \% $ 0.1465
$ \lambda $ Noise on $ s(t) $ ($ \% $) $ \frac{||{u_0-U_0}||_2}{||{u_0}||_2} $
$ 10^{-2} $ 0 $ \% $ 0.0953
$ 10^{-2} $ 1 $ \% $ 0.0997
$ 10^{-2} $ 2 $ \% $ 0.1082
$ 10^{-2} $ 3 $ \% $ 0.1465
Table 4.  Relative errors using Landweber method
Noise on $ s(t) $ ($ \% $) $ \frac{||{u_0-U_0}||_2}{||{u_0}||_2} $
0 $ \% $ 0.1017
1 $ \% $ 0.1188
2 $ \% $ 0.1321
3 $ \% $ 0.1520
Noise on $ s(t) $ ($ \% $) $ \frac{||{u_0-U_0}||_2}{||{u_0}||_2} $
0 $ \% $ 0.1017
1 $ \% $ 0.1188
2 $ \% $ 0.1321
3 $ \% $ 0.1520
Table 5.  Relative errors using Tikhonov method
$ \lambda $ Noise on $ s(t) $ ($ \% $) $ \frac{||{u_0-U_0}||_2}{||{u_0}||_2} $
$ 10^{-3} $ 0 $ \% $ 0.0714
$ 10^{-3} $ 1 $ \% $ 0.0866
$ 10^{-3} $ 2 $ \% $ 0.0916
$ 10^{-3} $ 3 $ \% $ 0.1002
$ \lambda $ Noise on $ s(t) $ ($ \% $) $ \frac{||{u_0-U_0}||_2}{||{u_0}||_2} $
$ 10^{-3} $ 0 $ \% $ 0.0714
$ 10^{-3} $ 1 $ \% $ 0.0866
$ 10^{-3} $ 2 $ \% $ 0.0916
$ 10^{-3} $ 3 $ \% $ 0.1002
Table 6.  Relative errors using Landweber method
Noise on $ s(t) $ ($ \% $) $ \frac{||{u_0-U_0}||_2}{||{u_0}||_2} $
0 $ \% $ 0.0690
1 $ \% $ 0.0755
2 $ \% $ 0.0970
3 $ \% $ 0.1132
Noise on $ s(t) $ ($ \% $) $ \frac{||{u_0-U_0}||_2}{||{u_0}||_2} $
0 $ \% $ 0.0690
1 $ \% $ 0.0755
2 $ \% $ 0.0970
3 $ \% $ 0.1132
[1]

Donatella Danielli, Marianne Korten. On the pointwise jump condition at the free boundary in the 1-phase Stefan problem. Communications on Pure & Applied Analysis, 2005, 4 (2) : 357-366. doi: 10.3934/cpaa.2005.4.357

[2]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[3]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[4]

Masaru Ikehata, Mishio Kawashita. An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method. Inverse Problems & Imaging, 2014, 8 (4) : 1073-1116. doi: 10.3934/ipi.2014.8.1073

[5]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[6]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[7]

Roman Chapko, B. Tomas Johansson. An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semi-infinite regions. Inverse Problems & Imaging, 2008, 2 (3) : 317-333. doi: 10.3934/ipi.2008.2.317

[8]

Jiayue Zheng, Shangbin Cui. Bifurcation analysis of a tumor-model free boundary problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4397-4410. doi: 10.3934/dcdsb.2020103

[9]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[10]

Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control & Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014

[11]

Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087

[12]

Changming Song, Hong Li, Jina Li. Initial boundary value problem for the singularly perturbed Boussinesq-type equation. Conference Publications, 2013, 2013 (special) : 709-717. doi: 10.3934/proc.2013.2013.709

[13]

Jun Zhou. Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electronic Research Archive, 2020, 28 (1) : 67-90. doi: 10.3934/era.2020005

[14]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[15]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[16]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[17]

Shuli Chen, Zewen Wang, Guolin Chen. Cauchy problem of non-homogenous stochastic heat equation and application to inverse random source problem. Inverse Problems & Imaging, 2021, 15 (4) : 619-639. doi: 10.3934/ipi.2021008

[18]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[19]

Jussi Korpela, Matti Lassas, Lauri Oksanen. Discrete regularization and convergence of the inverse problem for 1+1 dimensional wave equation. Inverse Problems & Imaging, 2019, 13 (3) : 575-596. doi: 10.3934/ipi.2019027

[20]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

2020 Impact Factor: 2.425

Article outline

Figures and Tables

[Back to Top]