• Previous Article
    Asymptotic spreading for Fisher-KPP reaction-diffusion equations with heterogeneous shifting diffusivity
  • DCDS-S Home
  • This Issue
  • Next Article
    An efficient D-N alternating algorithm for solving an inverse problem for Helmholtz equation
doi: 10.3934/dcdss.2021090
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Boundary stabilization of a flexible structure with dynamic boundary conditions via one time-dependent delayed boundary control

1. 

Kuwait University, Faculty of Science, Department of Mathematics, Safat 13060, Kuwait

2. 

UR Analysis and Control of PDEs, UR13ES64, Department of Mathematics, Faculty of Sciences of Monastir, University of Monastir, 5019 Monastir, Tunisia

* Corresponding author

Received  March 2021 Revised  June 2021 Early access August 2021

This article deals with the dynamic stability of a flexible cable attached at its top end to a cart and a load mass at its bottom end. The model is governed by a system of one partial differential equation coupled with two ordinary differential equations. Assuming that a time-dependent delay occurs in one boundary, the main concern of this paper is to stabilize the dynamics of the cable as well as the dynamical terms related to the cart and the load mass. To do so, we first prove that the problem is well-posed in the sense of semigroups theory provided that some conditions on the delay are satisfied. Thereafter, an appropriate Lyapunov function is put forward, which leads to the exponential decay of the energy as well as an estimate of the decay rate.

Citation: Boumedièene Chentouf, Sabeur Mansouri. Boundary stabilization of a flexible structure with dynamic boundary conditions via one time-dependent delayed boundary control. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021090
References:
[1]

E. M. Abdel-RahmanA. H. Nayfeh and Z. N. Masoud, Dynamics and control of cranes: A review, J. Vibration Control, 9 (2003), 863-908.  doi: 10.1177/1077546303009007007.  Google Scholar

[2]

F. Al-MusallamK. Ammari and B. Chentouf, Asymptotic behavior of a 2D overhead crane with input delays in the boundary control, Zeitschrift fur Angewandte Mathematik und Mechanik, 98 (2018), 1103-1122.  doi: 10.1002/zamm.201700208.  Google Scholar

[3]

K. Ammari and B. Chentouf, Further results on the long-time behavior of a 2D overhead crane with a boundary delay: Exponential convergence, Applied Math. and Computation, 365 (2020), 124698, 17 pp. doi: 10.1016/j.amc.2019.124698.  Google Scholar

[4]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitex, Springer, 2011.  Google Scholar

[5]

F. Boustany, Commande non Linéaire Adaptive de Systèmes Mécaniques de Type Pont Roulant. Stabilisation Frontière d'EDP,, PhD thesis, 1992. Google Scholar

[6]

B. Chentouf, Compensation of the interior delay effect for a rotating disk-beam system, IMA Journal of Math. Control and Information, 33 (2016), 963–978. doi: 10.1093/imamci/dnv018.  Google Scholar

[7]

B. Chentouf, Effect compensation of the presence of a time-dependent interior delay on the stabilization of the rotating disk-beam system, Nonlinear Dynamics, 84 (2016), 977–990. doi: 10.1007/s11071-015-2543-x.  Google Scholar

[8]

B. Chentouf and Z.-J. Han, On the stabilization of an overhead crane system with dynamic and delayed boundary conditions, IEEE Transactions on Automatic Control, 65 (2020), 4273-4280.  doi: 10.1109/TAC.2019.2953782.  Google Scholar

[9]

B. Chentouf and S. Mansouri, Exponential decay rate for the energy of a flexible structure with dynamic delayed boundary conditions and a local interior damping, Applied Math. Letters, 103 (2020), no. 106185. doi: 10.1016/j.aml.2019.106185.  Google Scholar

[10]

B. Chentouf and S. Mansouri, On the exponential stabilization of a flexible structure with dynamic delayed boundary conditions via one boundary control only, Journal of the Franklin Institute, 358 (2021), 934-962.  doi: 10.1016/j.jfranklin.2020.10.027.  Google Scholar

[11]

C. Chicone and Y. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, Mathematical Surveys and Monographs, vol. 70. Providence, (1999), RI: American Mathematical Society. doi: 10.1090/surv/070.  Google Scholar

[12]

F. ConradG. O'Dowd and F.-Z. Saouri, Asymptotic behavior for a model of flexible cable with tip masses, Asymptot. Anal., 30 (2002), 313-330.   Google Scholar

[13]

B. d'Andréa-NovelF. BoustanyF. Conrad and B. R. Rao, Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane, Math. Control. Signals Systems., 7 (1994), 1-22.  doi: 10.1007/BF01211483.  Google Scholar

[14]

B. d'Andréa-Novel and J. M. Coron, Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach, Automatica, 36 (2000), 587-593.  doi: 10.1016/S0005-1098(99)00182-X.  Google Scholar

[15]

B. d'Andréa-Novel and J. M. Coron, Stabilization of an overhead crane with a variable length flexible cable, Computational and Applied Mathematics, 21 (2002), 101-134.   Google Scholar

[16]

B. d'Andréa-NovelI. Moyano and L. Rosier, Finite-time stabilization of an overhead crane with a flexible cable, Math. Control. Signals Systems, 31 (2019), 1-19.  doi: 10.1007/s00498-019-0235-7.  Google Scholar

[17]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time–delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697-713.  doi: 10.1137/0326040.  Google Scholar

[18]

R. Datko, Two examples of ill-posedness with respect to time–delays revisited, IEEE Trans. Automatic Control, 42 (1997), 511-515.  doi: 10.1109/9.566660.  Google Scholar

[19]

R. DatkoJ. Lagnese and M. P. Polis, An example on the effect of time–delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.  Google Scholar

[20]

A. Elharfi, Exponential stabilization and motion planning of an overhead crane system, IMA J. Math. Control Info., 34 (2017), 1299-1321.  doi: 10.1093/imamci/dnw026.  Google Scholar

[21]

A. Elharfi, Control design of an overhead crane system from the perspective of stabilizing undesired oscillations, IMA J. Math. Control Info., 28 (2011), 267-278.  doi: 10.1093/imamci/dnr007.  Google Scholar

[22]

A. Elharfi, Exponential stabilization and motion planning of an overhead crane system, IMA J. Math. Control Info., 34 (2017), 1299-1321.  doi: 10.1093/imamci/dnw026.  Google Scholar

[23]

T. Kato, Linear and quasilinear equations of evolution of hyperbolic type, C.I.E.M., 72, Springer, Heidelberg, 2011,125–191. doi: 10.1007/978-3-642-11105-1_4.  Google Scholar

[24]

M. Kirane, B. Said-Houari and M. N. Anwar, Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks, Commun. Pure Appl. Anal., 10 (2011), 667–686. doi: 10.3934/cpaa.2011.10.667.  Google Scholar

[25]

G. Kuralay and H. Özbay, Design of first order controllers for a flexible robot arm with time delay, Appl. Comput. Math., 16 (2017), 48-58.   Google Scholar

[26]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC, Boca Raton, 1999.  Google Scholar

[27]

Z.-H. Luo, B.-Z. Guo and O. Morgul, Stability and Stabilization of Infinite Dimensional Systems with Applications, Springer-Verlag, London, 1999. doi: 10.1007/978-1-4471-0419-3.  Google Scholar

[28]

A. Mifdal, Stabilisation uniforme d'un système hybride, C. R. Acad. Sci. Paris. Série I Math., 324 (1997), 37-42.  doi: 10.1016/S0764-4442(97)80100-0.  Google Scholar

[29]

O. Morgul, On the stabilization and stability robustness against small delays of some damped wave equations, IEEE Trans. Automat. Control, 40 (1995), 1626-1630.  doi: 10.1109/9.412634.  Google Scholar

[30]

S. NicaiseJ. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 559-581.  doi: 10.3934/dcdss.2009.2.559.  Google Scholar

[31]

S. NicaiseC. Pignotti and J. Valein, Exponential stability of the wave equations with boundary time-varying delays, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 693-722.  doi: 10.3934/dcdss.2011.4.693.  Google Scholar

[32]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[33]

C. Prieur and E. Trélat, Feedback stabilization of a 1-D linear reaction-diffusion equation with delay boundary control, IEEE Trans. Automat. Control, 64 (2019), 1415-1425.  doi: 10.1109/TAC.2018.2849560.  Google Scholar

[34]

B. Rao, Decay estimate of solution for hybrid system of flexible structures, Euro. J. Appl. Math., 4 (1993), 303-319.  doi: 10.1017/S0956792500001133.  Google Scholar

[35]

H. Sano, Boundary stabilization of hyperbolic systems related to overhead cranes, IMA J. Math. Control Info., 25 (2008), 353-366.  doi: 10.1093/imamci/dnm031.  Google Scholar

show all references

References:
[1]

E. M. Abdel-RahmanA. H. Nayfeh and Z. N. Masoud, Dynamics and control of cranes: A review, J. Vibration Control, 9 (2003), 863-908.  doi: 10.1177/1077546303009007007.  Google Scholar

[2]

F. Al-MusallamK. Ammari and B. Chentouf, Asymptotic behavior of a 2D overhead crane with input delays in the boundary control, Zeitschrift fur Angewandte Mathematik und Mechanik, 98 (2018), 1103-1122.  doi: 10.1002/zamm.201700208.  Google Scholar

[3]

K. Ammari and B. Chentouf, Further results on the long-time behavior of a 2D overhead crane with a boundary delay: Exponential convergence, Applied Math. and Computation, 365 (2020), 124698, 17 pp. doi: 10.1016/j.amc.2019.124698.  Google Scholar

[4]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitex, Springer, 2011.  Google Scholar

[5]

F. Boustany, Commande non Linéaire Adaptive de Systèmes Mécaniques de Type Pont Roulant. Stabilisation Frontière d'EDP,, PhD thesis, 1992. Google Scholar

[6]

B. Chentouf, Compensation of the interior delay effect for a rotating disk-beam system, IMA Journal of Math. Control and Information, 33 (2016), 963–978. doi: 10.1093/imamci/dnv018.  Google Scholar

[7]

B. Chentouf, Effect compensation of the presence of a time-dependent interior delay on the stabilization of the rotating disk-beam system, Nonlinear Dynamics, 84 (2016), 977–990. doi: 10.1007/s11071-015-2543-x.  Google Scholar

[8]

B. Chentouf and Z.-J. Han, On the stabilization of an overhead crane system with dynamic and delayed boundary conditions, IEEE Transactions on Automatic Control, 65 (2020), 4273-4280.  doi: 10.1109/TAC.2019.2953782.  Google Scholar

[9]

B. Chentouf and S. Mansouri, Exponential decay rate for the energy of a flexible structure with dynamic delayed boundary conditions and a local interior damping, Applied Math. Letters, 103 (2020), no. 106185. doi: 10.1016/j.aml.2019.106185.  Google Scholar

[10]

B. Chentouf and S. Mansouri, On the exponential stabilization of a flexible structure with dynamic delayed boundary conditions via one boundary control only, Journal of the Franklin Institute, 358 (2021), 934-962.  doi: 10.1016/j.jfranklin.2020.10.027.  Google Scholar

[11]

C. Chicone and Y. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, Mathematical Surveys and Monographs, vol. 70. Providence, (1999), RI: American Mathematical Society. doi: 10.1090/surv/070.  Google Scholar

[12]

F. ConradG. O'Dowd and F.-Z. Saouri, Asymptotic behavior for a model of flexible cable with tip masses, Asymptot. Anal., 30 (2002), 313-330.   Google Scholar

[13]

B. d'Andréa-NovelF. BoustanyF. Conrad and B. R. Rao, Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane, Math. Control. Signals Systems., 7 (1994), 1-22.  doi: 10.1007/BF01211483.  Google Scholar

[14]

B. d'Andréa-Novel and J. M. Coron, Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach, Automatica, 36 (2000), 587-593.  doi: 10.1016/S0005-1098(99)00182-X.  Google Scholar

[15]

B. d'Andréa-Novel and J. M. Coron, Stabilization of an overhead crane with a variable length flexible cable, Computational and Applied Mathematics, 21 (2002), 101-134.   Google Scholar

[16]

B. d'Andréa-NovelI. Moyano and L. Rosier, Finite-time stabilization of an overhead crane with a flexible cable, Math. Control. Signals Systems, 31 (2019), 1-19.  doi: 10.1007/s00498-019-0235-7.  Google Scholar

[17]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time–delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697-713.  doi: 10.1137/0326040.  Google Scholar

[18]

R. Datko, Two examples of ill-posedness with respect to time–delays revisited, IEEE Trans. Automatic Control, 42 (1997), 511-515.  doi: 10.1109/9.566660.  Google Scholar

[19]

R. DatkoJ. Lagnese and M. P. Polis, An example on the effect of time–delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.  Google Scholar

[20]

A. Elharfi, Exponential stabilization and motion planning of an overhead crane system, IMA J. Math. Control Info., 34 (2017), 1299-1321.  doi: 10.1093/imamci/dnw026.  Google Scholar

[21]

A. Elharfi, Control design of an overhead crane system from the perspective of stabilizing undesired oscillations, IMA J. Math. Control Info., 28 (2011), 267-278.  doi: 10.1093/imamci/dnr007.  Google Scholar

[22]

A. Elharfi, Exponential stabilization and motion planning of an overhead crane system, IMA J. Math. Control Info., 34 (2017), 1299-1321.  doi: 10.1093/imamci/dnw026.  Google Scholar

[23]

T. Kato, Linear and quasilinear equations of evolution of hyperbolic type, C.I.E.M., 72, Springer, Heidelberg, 2011,125–191. doi: 10.1007/978-3-642-11105-1_4.  Google Scholar

[24]

M. Kirane, B. Said-Houari and M. N. Anwar, Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks, Commun. Pure Appl. Anal., 10 (2011), 667–686. doi: 10.3934/cpaa.2011.10.667.  Google Scholar

[25]

G. Kuralay and H. Özbay, Design of first order controllers for a flexible robot arm with time delay, Appl. Comput. Math., 16 (2017), 48-58.   Google Scholar

[26]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC, Boca Raton, 1999.  Google Scholar

[27]

Z.-H. Luo, B.-Z. Guo and O. Morgul, Stability and Stabilization of Infinite Dimensional Systems with Applications, Springer-Verlag, London, 1999. doi: 10.1007/978-1-4471-0419-3.  Google Scholar

[28]

A. Mifdal, Stabilisation uniforme d'un système hybride, C. R. Acad. Sci. Paris. Série I Math., 324 (1997), 37-42.  doi: 10.1016/S0764-4442(97)80100-0.  Google Scholar

[29]

O. Morgul, On the stabilization and stability robustness against small delays of some damped wave equations, IEEE Trans. Automat. Control, 40 (1995), 1626-1630.  doi: 10.1109/9.412634.  Google Scholar

[30]

S. NicaiseJ. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 559-581.  doi: 10.3934/dcdss.2009.2.559.  Google Scholar

[31]

S. NicaiseC. Pignotti and J. Valein, Exponential stability of the wave equations with boundary time-varying delays, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 693-722.  doi: 10.3934/dcdss.2011.4.693.  Google Scholar

[32]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[33]

C. Prieur and E. Trélat, Feedback stabilization of a 1-D linear reaction-diffusion equation with delay boundary control, IEEE Trans. Automat. Control, 64 (2019), 1415-1425.  doi: 10.1109/TAC.2018.2849560.  Google Scholar

[34]

B. Rao, Decay estimate of solution for hybrid system of flexible structures, Euro. J. Appl. Math., 4 (1993), 303-319.  doi: 10.1017/S0956792500001133.  Google Scholar

[35]

H. Sano, Boundary stabilization of hyperbolic systems related to overhead cranes, IMA J. Math. Control Info., 25 (2008), 353-366.  doi: 10.1093/imamci/dnm031.  Google Scholar

Figure 1.  The overhead crane model
Figure 2.  The platform
Figure 3.  Payload
[1]

Yaru Xie, Genqi Xu. Exponential stability of 1-d wave equation with the boundary time delay based on the interior control. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 557-579. doi: 10.3934/dcdss.2017028

[2]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[3]

Aowen Kong, Carlos Nonato, Wenjun Liu, Manoel Jeremias dos Santos, Carlos Raposo. Equivalence between exponential stabilization and observability inequality for magnetic effected piezoelectric beams with time-varying delay and time-dependent weights. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021168

[4]

Masahiro Kubo, Noriaki Yamazaki. Periodic stability of elliptic-parabolic variational inequalities with time-dependent boundary double obstacles. Conference Publications, 2007, 2007 (Special) : 614-623. doi: 10.3934/proc.2007.2007.614

[5]

Mourad Bellassoued, Oumaima Ben Fraj. Stability estimates for time-dependent coefficients appearing in the magnetic Schrödinger equation from arbitrary boundary measurements. Inverse Problems & Imaging, 2020, 14 (5) : 841-865. doi: 10.3934/ipi.2020039

[6]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[7]

Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discrete-time state observations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 209-226. doi: 10.3934/dcdsb.2017011

[8]

Mourad Choulli, Yavar Kian. Stability of the determination of a time-dependent coefficient in parabolic equations. Mathematical Control & Related Fields, 2013, 3 (2) : 143-160. doi: 10.3934/mcrf.2013.3.143

[9]

Guanghui Hu, Yavar Kian. Uniqueness and stability for the recovery of a time-dependent source in elastodynamics. Inverse Problems & Imaging, 2020, 14 (3) : 463-487. doi: 10.3934/ipi.2020022

[10]

Eduard Marušić-Paloka, Igor Pažanin. Reaction of the fluid flow on time-dependent boundary perturbation. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1227-1246. doi: 10.3934/cpaa.2019059

[11]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[12]

Yi Zhang, Yuyun Zhao, Tao Xu, Xin Liu. $p$th Moment absolute exponential stability of stochastic control system with Markovian switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 471-486. doi: 10.3934/jimo.2016.12.471

[13]

Xiang Xie, Honglei Xu, Xinming Cheng, Yilun Yu. Improved results on exponential stability of discrete-time switched delay systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 199-208. doi: 10.3934/dcdsb.2017010

[14]

Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249

[15]

Jiangshan Wang, Lingxiong Meng, Hongen Jia. Numerical analysis of modular grad-div stability methods for the time-dependent Navier-Stokes/Darcy model. Electronic Research Archive, 2020, 28 (3) : 1191-1205. doi: 10.3934/era.2020065

[16]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[17]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[18]

Martin Kružík, Johannes Zimmer. Rate-independent processes with linear growth energies and time-dependent boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 591-604. doi: 10.3934/dcdss.2012.5.591

[19]

Fuke Wu, George Yin, Le Yi Wang. Razumikhin-type theorems on moment exponential stability of functional differential equations involving two-time-scale Markovian switching. Mathematical Control & Related Fields, 2015, 5 (3) : 697-719. doi: 10.3934/mcrf.2015.5.697

[20]

Takeshi Fukao, Masahiro Kubo. Time-dependent obstacle problem in thermohydraulics. Conference Publications, 2009, 2009 (Special) : 240-249. doi: 10.3934/proc.2009.2009.240

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (144)
  • HTML views (168)
  • Cited by (0)

Other articles
by authors

[Back to Top]