• Previous Article
    Nonexistence of global solutions for a class of viscoelastic wave equations
  • DCDS-S Home
  • This Issue
  • Next Article
    Global existence and nonexistence for a class of finitely degenerate coupled parabolic systems with high initial energy level
December  2021, 14(12): 4201-4211. doi: 10.3934/dcdss.2021114

Global well-posedness for the Cauchy problem of generalized Boussinesq equations in the control problem regarding initial data

1. 

Department of Electronic Information, Jiangsu University of Science and Technology, Zhenjiang 212003, China

2. 

School of Science and Technology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada

* Corresponding author: Shaohua Chen

Received  August 2021 Revised  August 2021 Published  December 2021 Early access  October 2021

Fund Project: The first author was supported by Jiangsu key R & D plan(BE2018007) and the second author was supported by NSERC Grant RGPIN-2019-05940

The Cauchy problem of one dimensional generalized Boussinesq equation is treated by the approach of variational method in order to realize the control aim, which is the control problem reflecting the relationship between initial data and global dynamics of solution. For a class of more general nonlinearities we classify the initial data for the global solution and finite time blowup solution. The results generalize some existing conclusions related this problem.

Citation: Xiaoqiang Dai, Shaohua Chen. Global well-posedness for the Cauchy problem of generalized Boussinesq equations in the control problem regarding initial data. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4201-4211. doi: 10.3934/dcdss.2021114
References:
[1]

J. L. BonaM. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media Ⅰ: Derivation and the linear theory, J. Nonlinear Sci., 12 (2002), 283-318.  doi: 10.1007/s00332-002-0466-4.  Google Scholar

[2]

J. L. Bona and R. L. Sachs, Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, Commun. Math. Phys., 118 (1988), 15-29.  doi: 10.1007/BF01218475.  Google Scholar

[3]

J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, et communiquant au liquide contene dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pure Appl., 17 (1872), 55-108.   Google Scholar

[4]

X. DaiC. YangS. HuangT. Yu and Y. Zhu, Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems, Electron. Res. Arch., 28 (2020), 91-102.  doi: 10.3934/era.2020006.  Google Scholar

[5]

D.-A. Geba and E. Witz, Revisited bilinear Schrödinger estimates with applications to generalized Boussinesq equations, Electron, Res. Arch., 28 (2020), 627-649.  doi: 10.3934/era.2020033.  Google Scholar

[6]

T.-E. GhoulV. T. Nguyen and H. Zaag, Construction of type Ⅰ blowup solutions for a higher order semilinear parabolic equation, Adv. Nonlinear. Anal., 9 (2020), 388-412.  doi: 10.1515/anona-2020-0006.  Google Scholar

[7]

G. Hwang and B. Moon, Global existence and propagation speed for a Degasperis-Procesi equation with both dissipation and dispersion, Electron. Res. Arch., 28 (2020), 15-25.  doi: 10.3934/era.2020002.  Google Scholar

[8]

W. LianM. S. Ahmed and R. Xu, Global existence and blow up of solution for semi-linear hyperbolic equation with the product of logarithmic and power-type nonlinearity, Opuscula Math., 40 (2020), 111-130.  doi: 10.7494/OpMath.2020.40.1.111.  Google Scholar

[9]

W. Lian and R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear. Anal., 9 (2020), 613-632.  doi: 10.1515/anona-2020-0016.  Google Scholar

[10]

Q. LinY. H. Wu and R. Loxton, On the Cauchy problem for a generalized Boussinesq equation, J. Math. Anal. Appl., 353 (2009), 186-195.  doi: 10.1016/j.jmaa.2008.12.002.  Google Scholar

[11]

F. Linares, Global existence of small solutions for a generalized Boussinesq equation, J. Differential Equations, 106 (1993), 257-293.  doi: 10.1006/jdeq.1993.1108.  Google Scholar

[12]

Y. Liu, Instability and blow-up of solutions to a generalized Boussinesq equation, SIAM J. Math. Anal., 26 (1995), 1527-1546.  doi: 10.1137/S0036141093258094.  Google Scholar

[13]

Y. Liu, Instability of solitary waves for generalized Boussinesq equations, J. Dynamics Differential Equations, 5 (1993), 537-558.  doi: 10.1007/BF01053535.  Google Scholar

[14]

Y. Liu, Strong instability of solitary-wave solutions of a generalized Boussinesq equation, J. Differential Equations, 164 (2000), 223-239.  doi: 10.1006/jdeq.2000.3765.  Google Scholar

[15]

Y. Liu and R. Xu, Global existence and blow up of solutions for Cauchy problem of generalized Boussinesq equation, Phys. D, 237 (2008), 721-731.  doi: 10.1016/j.physd.2007.09.028.  Google Scholar

[16]

Y. Liu and R. Xu, A class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differential Equations, 244 (2008), 200-228.  doi: 10.1016/j.jde.2007.10.015.  Google Scholar

[17]

Y. Liu and R. Xu, Fourth order wave equations with nonlinear strain and source terms, J. Math. Anal. Appl., 331 (2007), 585-607.  doi: 10.1016/j.jmaa.2006.09.010.  Google Scholar

[18]

T. LuoT. Tao and L. Zhang, Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature, Discrete Contin. Dyn. Syst., 40 (2020), 3737-3765.  doi: 10.3934/dcds.2019230.  Google Scholar

[19]

A. MohammedV. D. Rădulescu and A. Vitolo, Blow-up solutions for fully nonlinear equations: Existence, asymptotic estimates and uniqueness, Adv. Nonlinear. Anal., 9 (2020), 39-64.  doi: 10.1515/anona-2018-0134.  Google Scholar

[20]

H. Qiu and Z.-A. Yao, The regularized Boussinesq equations with partial dissipations in dimension two, Electron. Res. Arch., 28 (2020), 1375-1393.  doi: 10.3934/era.2020073.  Google Scholar

[21]

R. Xue, Local and global existence of solutions for- the Cauchy problem of a generalized Boussinesq equation, J. Math. Anal. Appl., 316 (2006), 307-327.  doi: 10.1016/j.jmaa.2005.04.041.  Google Scholar

[22]

Y. YangM. Salik AhmedL. Qin and R. Xu, Global well-posedness of a class of fourth-order strongly damped nonlinear wave equations, Opuscula Math., 39 (2019), 297-313.  doi: 10.7494/OpMath.2019.39.2.297.  Google Scholar

show all references

References:
[1]

J. L. BonaM. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media Ⅰ: Derivation and the linear theory, J. Nonlinear Sci., 12 (2002), 283-318.  doi: 10.1007/s00332-002-0466-4.  Google Scholar

[2]

J. L. Bona and R. L. Sachs, Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, Commun. Math. Phys., 118 (1988), 15-29.  doi: 10.1007/BF01218475.  Google Scholar

[3]

J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, et communiquant au liquide contene dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pure Appl., 17 (1872), 55-108.   Google Scholar

[4]

X. DaiC. YangS. HuangT. Yu and Y. Zhu, Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems, Electron. Res. Arch., 28 (2020), 91-102.  doi: 10.3934/era.2020006.  Google Scholar

[5]

D.-A. Geba and E. Witz, Revisited bilinear Schrödinger estimates with applications to generalized Boussinesq equations, Electron, Res. Arch., 28 (2020), 627-649.  doi: 10.3934/era.2020033.  Google Scholar

[6]

T.-E. GhoulV. T. Nguyen and H. Zaag, Construction of type Ⅰ blowup solutions for a higher order semilinear parabolic equation, Adv. Nonlinear. Anal., 9 (2020), 388-412.  doi: 10.1515/anona-2020-0006.  Google Scholar

[7]

G. Hwang and B. Moon, Global existence and propagation speed for a Degasperis-Procesi equation with both dissipation and dispersion, Electron. Res. Arch., 28 (2020), 15-25.  doi: 10.3934/era.2020002.  Google Scholar

[8]

W. LianM. S. Ahmed and R. Xu, Global existence and blow up of solution for semi-linear hyperbolic equation with the product of logarithmic and power-type nonlinearity, Opuscula Math., 40 (2020), 111-130.  doi: 10.7494/OpMath.2020.40.1.111.  Google Scholar

[9]

W. Lian and R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear. Anal., 9 (2020), 613-632.  doi: 10.1515/anona-2020-0016.  Google Scholar

[10]

Q. LinY. H. Wu and R. Loxton, On the Cauchy problem for a generalized Boussinesq equation, J. Math. Anal. Appl., 353 (2009), 186-195.  doi: 10.1016/j.jmaa.2008.12.002.  Google Scholar

[11]

F. Linares, Global existence of small solutions for a generalized Boussinesq equation, J. Differential Equations, 106 (1993), 257-293.  doi: 10.1006/jdeq.1993.1108.  Google Scholar

[12]

Y. Liu, Instability and blow-up of solutions to a generalized Boussinesq equation, SIAM J. Math. Anal., 26 (1995), 1527-1546.  doi: 10.1137/S0036141093258094.  Google Scholar

[13]

Y. Liu, Instability of solitary waves for generalized Boussinesq equations, J. Dynamics Differential Equations, 5 (1993), 537-558.  doi: 10.1007/BF01053535.  Google Scholar

[14]

Y. Liu, Strong instability of solitary-wave solutions of a generalized Boussinesq equation, J. Differential Equations, 164 (2000), 223-239.  doi: 10.1006/jdeq.2000.3765.  Google Scholar

[15]

Y. Liu and R. Xu, Global existence and blow up of solutions for Cauchy problem of generalized Boussinesq equation, Phys. D, 237 (2008), 721-731.  doi: 10.1016/j.physd.2007.09.028.  Google Scholar

[16]

Y. Liu and R. Xu, A class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differential Equations, 244 (2008), 200-228.  doi: 10.1016/j.jde.2007.10.015.  Google Scholar

[17]

Y. Liu and R. Xu, Fourth order wave equations with nonlinear strain and source terms, J. Math. Anal. Appl., 331 (2007), 585-607.  doi: 10.1016/j.jmaa.2006.09.010.  Google Scholar

[18]

T. LuoT. Tao and L. Zhang, Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature, Discrete Contin. Dyn. Syst., 40 (2020), 3737-3765.  doi: 10.3934/dcds.2019230.  Google Scholar

[19]

A. MohammedV. D. Rădulescu and A. Vitolo, Blow-up solutions for fully nonlinear equations: Existence, asymptotic estimates and uniqueness, Adv. Nonlinear. Anal., 9 (2020), 39-64.  doi: 10.1515/anona-2018-0134.  Google Scholar

[20]

H. Qiu and Z.-A. Yao, The regularized Boussinesq equations with partial dissipations in dimension two, Electron. Res. Arch., 28 (2020), 1375-1393.  doi: 10.3934/era.2020073.  Google Scholar

[21]

R. Xue, Local and global existence of solutions for- the Cauchy problem of a generalized Boussinesq equation, J. Math. Anal. Appl., 316 (2006), 307-327.  doi: 10.1016/j.jmaa.2005.04.041.  Google Scholar

[22]

Y. YangM. Salik AhmedL. Qin and R. Xu, Global well-posedness of a class of fourth-order strongly damped nonlinear wave equations, Opuscula Math., 39 (2019), 297-313.  doi: 10.7494/OpMath.2019.39.2.297.  Google Scholar

[1]

Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finite-time blowup for a Schrödinger equation with nonlinear source term. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 1171-1183. doi: 10.3934/dcds.2019050

[2]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[3]

Vladimir Varlamov. Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems, 2001, 7 (4) : 675-702. doi: 10.3934/dcds.2001.7.675

[4]

Xuan Liu, Ting Zhang. Local well-posedness and finite time blowup for fourth-order Schrödinger equation with complex coefficient. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021156

[5]

Yue Pang, Xingchang Wang, Furong Wu. Global existence and blowup in infinite time for a fourth order wave equation with damping and logarithmic strain terms. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4439-4463. doi: 10.3934/dcdss.2021115

[6]

Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401

[7]

Grzegorz Karch, Kanako Suzuki, Jacek Zienkiewicz. Finite-time blowup of solutions to some activator-inhibitor systems. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 4997-5010. doi: 10.3934/dcds.2016016

[8]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

[9]

Zhengce Zhang, Yan Li. Global existence and gradient blowup of solutions for a semilinear parabolic equation with exponential source. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 3019-3029. doi: 10.3934/dcdsb.2014.19.3019

[10]

Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185

[11]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[12]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[13]

Ömer Oruç, Alaattin Esen, Fatih Bulut. A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers' equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 533-542. doi: 10.3934/dcdss.2019035

[14]

Hirotada Honda. Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling. Networks & Heterogeneous Media, 2017, 12 (1) : 25-57. doi: 10.3934/nhm.2017002

[15]

Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134

[16]

Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023

[17]

Javier A. Almonacid, Gabriel N. Gatica, Ricardo Oyarzúa, Ricardo Ruiz-Baier. A new mixed finite element method for the n-dimensional Boussinesq problem with temperature-dependent viscosity. Networks & Heterogeneous Media, 2020, 15 (2) : 215-245. doi: 10.3934/nhm.2020010

[18]

Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121

[19]

Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013

[20]

Congming Peng, Dun Zhao. Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3335-3356. doi: 10.3934/dcdsb.2018323

2020 Impact Factor: 2.425

Article outline

[Back to Top]