2012, 1(1): 17-42. doi: 10.3934/eect.2012.1.17

On Kelvin-Voigt model and its generalizations

1. 

Mathematical Institute of Charles University, Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Prague, Czech Republic, Czech Republic

2. 

Department of Mechanical Engineering, Texas A&M University, College Station, TX 77845, United States

Received  October 2011 Revised  February 2012 Published  March 2012

We consider a generalization of the Kelvin-Voigt model where the elastic part of the Cauchy stress depends non-linearly on the linearized strain and the dissipative part of the Cauchy stress is a nonlinear function of the symmetric part of the velocity gradient. The assumption that the Cauchy stress depends non-linearly on the linearized strain can be justified if one starts with the assumption that the kinematical quantity, the left Cauchy-Green stretch tensor, is a nonlinear function of the Cauchy stress, and linearizes under the assumption that the displacement gradient is small. Long-time and large data existence, uniqueness and regularity properties of weak solution to such a generalized Kelvin-Voigt model are established for the non-homogeneous mixed boundary value problem. The main novelty with regard to the mathematical analysis consists in including nonlinear (non-quadratic) dissipation in the problem.
Citation: Miroslav Bulíček, Josef Málek, K. R. Rajagopal. On Kelvin-Voigt model and its generalizations. Evolution Equations & Control Theory, 2012, 1 (1) : 17-42. doi: 10.3934/eect.2012.1.17
References:
[1]

M. Bulíček, F. Ettwein, P. Kaplický and D. Pražák, On uniqueness and time regularity of flows of power-law like non-Newtonian fluids,, Math. Methods Appl. Sci., 33 (2010), 1995.

[2]

M. Bulíček, P. Gwiazda, J. Málek, K. R. Rajagopal and A. Świerczewska-Gwiazda, On flows of fluids described by an implicit constitutive equation characterized by a maximal monotone graph,, in, (2012).

[3]

M. Bulíček, P. Gwiazda, J. Málek and A. Świerczewska-Gwiazda, On unsteady flows of implicitly constituted incompressible fluids,, SIAM J. Math. Anal., (2011).

[4]

E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations,", McGraw-Hill Book Company, (1955).

[5]

L. Diening, M. Růžička and J. Wolf, Existence of weak solutions for unsteady motions of generalized Newtonian fluids,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9 (2010), 1.

[6]

E. Emmrich and M. Thalhammer, Convergence of a time discretisation for doubly nonlinear evolution equations of second order,, Found. Comput. Math., 10 (2010), 171. doi: 10.1007/s10208-010-9061-5.

[7]

E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford Lecture Series in Mathematics and its Applications, 26,, Oxford University Press, (2004).

[8]

E. Feireisl and A. Novotný, "Singular Limits in Thermodynamics of Viscous Fluids,", Advances in Mathematical Fluid Mechanics, (2009).

[9]

J. Frehse, J. Málek and M. Růžička, Large data existence result for unsteady flows of inhomogeneous shear-thickening heat-conducting incompressible fluids,, Comm. Partial Differential Equations, 35 (2010), 1891.

[10]

J. Frehse and M. Růžička, Non-homogeneous generalized Newtonian fluids,, Math. Z., 260 (2008), 355. doi: 10.1007/s00209-007-0278-1.

[11]

A. Friedman and J. Nečas, Systems of nonlinear wave equations with nonlinear viscosity,, Pacific J. Math., 135 (1988), 29.

[12]

G. Friesecke and G. Dolzmann, Implicit time discretization and global existence for a quasi-linear evolution equation with nonconvex energy,, SIAM J. Math. Anal., 28 (1997), 363. doi: 10.1137/S0036141095285958.

[13]

Y. Fung, "Biomechanics: Mechanical Properties of Living Tissues,", Springer-Verlag, (1993).

[14]

A. Kufner, O. John and S. Fučík, "Function Spaces,", Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, (1977).

[15]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", Dunod, (1969).

[16]

J. Málek, J. Nečas and M. Růžička, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: The case $p\geq2$,, Adv. Differential Equations, 6 (2001), 257.

[17]

J. Málek, J. Nečas, M. Rokyta and M. Růžička, "Weak and Measure-Valued Solutions to Evolutionary PDEs,", Applied Mathematics and Mathematical Computation, 13 (1996).

[18]

K. R. Rajagopal, A note on a reappraisal and generalization of the Kelvin-Voigt Model,, Mechanics Research Communications, 36 (2009), 232. doi: 10.1016/j.mechrescom.2008.09.005.

[19]

W. Ramberg and W. R. Osgood, Description of stress-strain curves by three parameters,, Technical Notes Nat. Adv. Comm. Aeronaut., 1943 (1943).

[20]

W. Thompson, On the elasticity and viscosity of metals,, Proc. Roy. Soc. London A, 14 (1865), 289. doi: 10.1098/rspl.1865.0052.

[21]

B. Tvedt, Quasilinear equations for viscoelasticity of strain-rate type,, Arch. Ration. Mech. Anal., 189 (2008), 237. doi: 10.1007/s00205-007-0109-x.

[22]

W. Voigt, Ueber innere Reibung fester Körper, insbesondere der Metalle,, Annalen der Physik, 283 (1892), 671. doi: 10.1002/andp.18922831210.

show all references

References:
[1]

M. Bulíček, F. Ettwein, P. Kaplický and D. Pražák, On uniqueness and time regularity of flows of power-law like non-Newtonian fluids,, Math. Methods Appl. Sci., 33 (2010), 1995.

[2]

M. Bulíček, P. Gwiazda, J. Málek, K. R. Rajagopal and A. Świerczewska-Gwiazda, On flows of fluids described by an implicit constitutive equation characterized by a maximal monotone graph,, in, (2012).

[3]

M. Bulíček, P. Gwiazda, J. Málek and A. Świerczewska-Gwiazda, On unsteady flows of implicitly constituted incompressible fluids,, SIAM J. Math. Anal., (2011).

[4]

E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations,", McGraw-Hill Book Company, (1955).

[5]

L. Diening, M. Růžička and J. Wolf, Existence of weak solutions for unsteady motions of generalized Newtonian fluids,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9 (2010), 1.

[6]

E. Emmrich and M. Thalhammer, Convergence of a time discretisation for doubly nonlinear evolution equations of second order,, Found. Comput. Math., 10 (2010), 171. doi: 10.1007/s10208-010-9061-5.

[7]

E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford Lecture Series in Mathematics and its Applications, 26,, Oxford University Press, (2004).

[8]

E. Feireisl and A. Novotný, "Singular Limits in Thermodynamics of Viscous Fluids,", Advances in Mathematical Fluid Mechanics, (2009).

[9]

J. Frehse, J. Málek and M. Růžička, Large data existence result for unsteady flows of inhomogeneous shear-thickening heat-conducting incompressible fluids,, Comm. Partial Differential Equations, 35 (2010), 1891.

[10]

J. Frehse and M. Růžička, Non-homogeneous generalized Newtonian fluids,, Math. Z., 260 (2008), 355. doi: 10.1007/s00209-007-0278-1.

[11]

A. Friedman and J. Nečas, Systems of nonlinear wave equations with nonlinear viscosity,, Pacific J. Math., 135 (1988), 29.

[12]

G. Friesecke and G. Dolzmann, Implicit time discretization and global existence for a quasi-linear evolution equation with nonconvex energy,, SIAM J. Math. Anal., 28 (1997), 363. doi: 10.1137/S0036141095285958.

[13]

Y. Fung, "Biomechanics: Mechanical Properties of Living Tissues,", Springer-Verlag, (1993).

[14]

A. Kufner, O. John and S. Fučík, "Function Spaces,", Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, (1977).

[15]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", Dunod, (1969).

[16]

J. Málek, J. Nečas and M. Růžička, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: The case $p\geq2$,, Adv. Differential Equations, 6 (2001), 257.

[17]

J. Málek, J. Nečas, M. Rokyta and M. Růžička, "Weak and Measure-Valued Solutions to Evolutionary PDEs,", Applied Mathematics and Mathematical Computation, 13 (1996).

[18]

K. R. Rajagopal, A note on a reappraisal and generalization of the Kelvin-Voigt Model,, Mechanics Research Communications, 36 (2009), 232. doi: 10.1016/j.mechrescom.2008.09.005.

[19]

W. Ramberg and W. R. Osgood, Description of stress-strain curves by three parameters,, Technical Notes Nat. Adv. Comm. Aeronaut., 1943 (1943).

[20]

W. Thompson, On the elasticity and viscosity of metals,, Proc. Roy. Soc. London A, 14 (1865), 289. doi: 10.1098/rspl.1865.0052.

[21]

B. Tvedt, Quasilinear equations for viscoelasticity of strain-rate type,, Arch. Ration. Mech. Anal., 189 (2008), 237. doi: 10.1007/s00205-007-0109-x.

[22]

W. Voigt, Ueber innere Reibung fester Körper, insbesondere der Metalle,, Annalen der Physik, 283 (1892), 671. doi: 10.1002/andp.18922831210.

[1]

Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029

[2]

Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021

[3]

Kaïs Ammari, Thomas Duyckaerts, Armen Shirikyan. Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation. Mathematical Control & Related Fields, 2016, 6 (1) : 1-25. doi: 10.3934/mcrf.2016.6.1

[4]

Louis Tebou. Stabilization of some elastodynamic systems with localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7117-7136. doi: 10.3934/dcds.2016110

[5]

Faustino Sánchez-Garduño, Philip K. Maini, Judith Pérez-Velázquez. A non-linear degenerate equation for direct aggregation and traveling wave dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 455-487. doi: 10.3934/dcdsb.2010.13.455

[6]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[7]

Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485

[8]

Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184

[9]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[10]

César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure & Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535

[11]

José M. Amigó, Isabelle Catto, Ángel Giménez, José Valero. Attractors for a non-linear parabolic equation modelling suspension flows. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 205-231. doi: 10.3934/dcdsb.2009.11.205

[12]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[13]

Igor Kukavica, Mohammed Ziane. Regularity of the Navier-Stokes equation in a thin periodic domain with large data. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 67-86. doi: 10.3934/dcds.2006.16.67

[14]

Franca Franchi, Barbara Lazzari, Roberta Nibbi. Uniqueness and stability results for non-linear Johnson-Segalman viscoelasticity and related models. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2111-2132. doi: 10.3934/dcdsb.2014.19.2111

[15]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[16]

Hua Qiu. Regularity criteria of smooth solution to the incompressible viscoelastic flow. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2873-2888. doi: 10.3934/cpaa.2013.12.2873

[17]

José F. Caicedo, Alfonso Castro. A semilinear wave equation with smooth data and no resonance having no continuous solution. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 653-658. doi: 10.3934/dcds.2009.24.653

[18]

Yannick Privat, Emmanuel Trélat, Enrique Zuazua. Complexity and regularity of maximal energy domains for the wave equation with fixed initial data. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6133-6153. doi: 10.3934/dcds.2015.35.6133

[19]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[20]

G. Gentile, V. Mastropietro. Convergence of Lindstedt series for the non linear wave equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 509-514. doi: 10.3934/cpaa.2004.3.509

2017 Impact Factor: 1.049

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (13)

[Back to Top]