American Institute of Mathematical Sciences

June  2013, 2(2): 233-253. doi: 10.3934/eect.2013.2.233

Rational decay rates for a PDE heat--structure interaction: A frequency domain approach

 1 Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588, United States 2 Department of Mathematics, University of Virginia, Charlottesville, VA 22903

Received  December 2012 Revised  February 2013 Published  March 2013

In this paper, we consider a simplified version of a fluid--structure PDE model ---in fact, a heat--structure interaction PDE-model. It is intended to be a first step toward a more realistic fluid--structure PDE model which has been of longstanding interest within the mathematical and biological sciences [33, p. 121], [17], [19]. This physically more sound and mathematically more challenging model will be treated in [13]. The simplified model replaces the linear dynamic Stokes equation with a linear $n$-dimensional heat equation (heat--structure interaction). The entire dynamics manifests both hyperbolic and parabolic features. Our main result is as follows: Given smooth initial data---i.e., data in the domain of the associated semigroup generator---the corresponding solutions decay at the rate $o( t^{-\frac{1}{2}})$ (see Theorem 1.3 below). The basis of our proof is the recently derived resolvent criterion in [15]. In order to apply it, however, suitable PDE-estimates need to be established for each component by also making critical use of the interface conditions. A companion paper [6] will sharpen Lemma 5.8 of the present work by use of a lengthy and technical microlocal argument as in [26,29,30,31], to obtain the optimal value $\alpha =1$; hence, the optimal decay rate $o(t^{-1})$. See Remarks 1.2,1.3.
Citation: George Avalos, Roberto Triggiani. Rational decay rates for a PDE heat--structure interaction: A frequency domain approach. Evolution Equations & Control Theory, 2013, 2 (2) : 233-253. doi: 10.3934/eect.2013.2.233
References:
 [1] F. Abdullah, D. Mercier, and S. Nicaise, Spectral analysis and exponential or polynomial stability and exponential or polynomial stability of some indefinite sign damped problems,, preprint, (2012).   Google Scholar [2] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups,, Trans. Amer. Math. Soc., 306 (1988), 837.  doi: 10.2307/2000826.  Google Scholar [3] G. Avalos, The strong stability and instability of a fluid-structure semigroup,, Appl. Math. Optimiz., 55 (2007), 163.  doi: 10.1007/s00245-006-0884-z.  Google Scholar [4] G. Avalos and M. Dvorak, A new maximality argument for a coupled fluid-structure interaction, with implications for a divergence-free finite element method,, Applicationes Mathematicae, 35 (2008), 259.  doi: 10.4064/am35-3-2.  Google Scholar [5] G. Avalos, I. Lasiecka and R. Triggiani, Higher regularity of a coupled parabolic-hyperbolic fluid-structure interactive system,, special issue of Georgian Math. J., 15 (2008), 403.   Google Scholar [6] G. Avalos, I. Lasiecka and R. Triggiani, Optimal rational decay of a parabolic-hyperbolic system with boundary interface,, (2012)., (2012).   Google Scholar [7] G. Avalos and R. Triggiani, The coupled PDE system arising in fluid/structure interaction, Part I: Explicit semigroup generator and its spectral properties,, in, 440 (2007), 15.  doi: 10.1090/conm/440/08475.  Google Scholar [8] G. Avalos and R. Triggiani, Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface,, Discr. Cont. Dynam. Sys., 22 (2008), 817.  doi: 10.3934/dcds.2008.22.817.  Google Scholar [9] G. Avalos and R. Triggiani, Backward uniqueness of the s.c. semigroup arising in parabolic-hyperbolic fluid-structure interaction,, J. Diff. Eqns., 245 (2008), 737.  doi: 10.1016/j.jde.2007.10.036.  Google Scholar [10] G. Avalos and R. Triggiani, Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction,, Discr. Cont. Dynam. Sys., 2 (2009), 417.  doi: 10.3934/dcdss.2009.2.417.  Google Scholar [11] G. Avalos and R. Triggiani, Coupled parabolic-hyperbolic Stokes-Lamé PDE system: Limit behavior of the resolvent operator on the imaginary axis,, Applicable Analysis, 88 (2009), 1357.  doi: 10.1080/00036810903278513.  Google Scholar [12] G. Avalos and R. Triggiani, Boundary feedback stabilization of a coupled parabolic-hyperbolic Stokes-Lamé PDE system,, J. Evol. Eqns., 9 (2009), 341.  doi: 10.1007/s00028-009-0015-9.  Google Scholar [13] G. Avalos and R. Triggiani, Rational decay rates for a fluid-structure interaction model via a resolvent-based approach,, (2013)., (2013).   Google Scholar [14] V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Weak and strong solutions in nonlinear fluid-structure interactions,, in, 440 (2007), 55.   Google Scholar [15] A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups,, Math. Ann., 347 (2010), 455.  doi: 10.1007/s00208-009-0439-0.  Google Scholar [16] K. N. Boyadzhiev and N. Levan, Strong stability of Hilbert space contraction semigroups,, Stud. Sci. Math. Hung., 30 (1995), 162.   Google Scholar [17] H. Cohen and S. I. Rubinow, "Some Mathematical Topics in Biology,", Proc. Symp. on System Theory, (1965), 321.   Google Scholar [18] P. Constantin and C. Foias, "Navier-Stokes Equations,", Chicago Lectures in Mathematics, (1988).   Google Scholar [19] Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem,, Discr. Contin. Dynam. Sys., 9 (2003), 633.  doi: 10.3934/dcds.2003.9.633.  Google Scholar [20] T. Duyckaerts, Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface,, Asymptotic Analysis, 51 (2007), 17.   Google Scholar [21] L. Fatori and J. E. Muñoz Rivera, Rates of decay to weak thermoelastic Bresse system,, IMA J. Appl. Math., 75 (2010), 881.  doi: 10.1093/imamat/hxq038.  Google Scholar [22] B. Kellogg, Properties of solutions of elliptic boundary value problems,, in, (1972), 47.   Google Scholar [23] J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation,, J. Diff. Eqns., 50 (1983), 163.  doi: 10.1016/0022-0396(83)90073-6.  Google Scholar [24] I. Lasiecka, J.-L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second-order hyperbolic operators,, J. Math. Pures et Appl., 65 (1986), 149.   Google Scholar [25] I. Lasiecka and R. Triggiani, Exact boundary controllability for the wave equation with Neumann boundary control,, Appl. Math. Optimiz., 19 (1986), 243.   Google Scholar [26] I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions,, Appl. Math. Optim., 25 (1992), 189.  doi: 10.1007/BF01182480.  Google Scholar [27] I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations, Vol. I,", Cambridge University Press, (2000).   Google Scholar [28] I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations, Vol. II,", Cambridge University Press, (2000).   Google Scholar [29] I. Lasiecka and R. Triggiani, Sharp regularity for mixed second order hyperbolic equations of Neumann type, Part I: The $L_2$ boundary case ,, Annali Matem. Pura e Applicata, (1990), 285.   Google Scholar [30] I. Lasiecka and R. Triggiani, Sharp trace estimates of solutions to Kirchhoff and Euler Bernoulli equations ,, Applied Math. Optimization, (1993), 277.   Google Scholar [31] I. Lasiecka and R. Triggiani, A sharp trace regularity result of Kirchhoff and thermoelastic plate equations with free boundary conditions ,, Rocky Mountain. J.Math., (2000), 981.   Google Scholar [32] N. Levan, The stabilizability problem: A Hilbert space operator decomposition approach,, Special issue on the mathematical foundations of system theory, 25 (1978), 721.  doi: 10.1109/TCS.1978.1084539.  Google Scholar [33] J.-L. Lions, "Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires,", Dunod; Gauthier-Villars, (1969).   Google Scholar [34] J.-L. Lions and E. Magenes, "Non-homogeneous Boundary Value Problems and Applications, Vol. I,", Die Grundlehren der mathematischen Wissenschaften, (1972).   Google Scholar [35] Y. I. Lyubich and V. Q. Phóng, Asymptotic stability of linear differential equations in Banach space,, Stud. Math., 88 (1988), 37.   Google Scholar [36] J. P. Quinn and D. L. Russell, Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping,, Proc. Roy. Soc. Edinburgh Sect. A, 77 (1977), 97.   Google Scholar [37] , J. M. Rivera,, private communication, (2012).   Google Scholar [38] J. E. Muñoz Rivera and M. G. Naso, Asymptotic stability of semigroups associated with linear weak dissipative systems with memory,, JMAA, 326 (2007), 691.  doi: 10.1016/j.jmaa.2006.03.022.  Google Scholar [39] J. E. Muñoz Rivera, M. G. Naso and F. Vagni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory,, JMAA, 286 (2003), 692.  doi: 10.1016/S0022-247X(03)00511-0.  Google Scholar [40] D. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions,, SIAM Review, 20 (1978), 639.  doi: 10.1137/1020095.  Google Scholar [41] H. Sohr, "The Navier-Stokes Equations. An Elementary Functional Analytic Approach,", Birkhäuser Advanced Texts: Basler Lehrbücher, (2001).  doi: 10.1007/978-3-0348-8255-2.  Google Scholar [42] R. Triggiani, A cosine operator approach to modeling boundary input problems for hyperbolic systems,, in, 6 (1978), 380.   Google Scholar [43] R. Triggiani, Exact boundary controllability of $L_2(\Omega) \times H^{-1}(\Omega)$ of the wave equation with Dirichlet boundary control acting on a portion of the boundary and related problems,, Appl. Math. Optimiz., 18 (1988), 241.  doi: 10.1007/BF01443625.  Google Scholar [44] R. Triggiani, Wave equation on a bounded domain with boundary dissipation: An operator approach,, J. Math. Anal. Appl., 137 (1989), 438.  doi: 10.1016/0022-247X(89)90255-2.  Google Scholar [45] X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system in fluid-structure interaction,, Arch. Rat. Mech. Anal., 184 (2007), 49.  doi: 10.1007/s00205-006-0020-x.  Google Scholar

show all references

References:
 [1] F. Abdullah, D. Mercier, and S. Nicaise, Spectral analysis and exponential or polynomial stability and exponential or polynomial stability of some indefinite sign damped problems,, preprint, (2012).   Google Scholar [2] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups,, Trans. Amer. Math. Soc., 306 (1988), 837.  doi: 10.2307/2000826.  Google Scholar [3] G. Avalos, The strong stability and instability of a fluid-structure semigroup,, Appl. Math. Optimiz., 55 (2007), 163.  doi: 10.1007/s00245-006-0884-z.  Google Scholar [4] G. Avalos and M. Dvorak, A new maximality argument for a coupled fluid-structure interaction, with implications for a divergence-free finite element method,, Applicationes Mathematicae, 35 (2008), 259.  doi: 10.4064/am35-3-2.  Google Scholar [5] G. Avalos, I. Lasiecka and R. Triggiani, Higher regularity of a coupled parabolic-hyperbolic fluid-structure interactive system,, special issue of Georgian Math. J., 15 (2008), 403.   Google Scholar [6] G. Avalos, I. Lasiecka and R. Triggiani, Optimal rational decay of a parabolic-hyperbolic system with boundary interface,, (2012)., (2012).   Google Scholar [7] G. Avalos and R. Triggiani, The coupled PDE system arising in fluid/structure interaction, Part I: Explicit semigroup generator and its spectral properties,, in, 440 (2007), 15.  doi: 10.1090/conm/440/08475.  Google Scholar [8] G. Avalos and R. Triggiani, Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface,, Discr. Cont. Dynam. Sys., 22 (2008), 817.  doi: 10.3934/dcds.2008.22.817.  Google Scholar [9] G. Avalos and R. Triggiani, Backward uniqueness of the s.c. semigroup arising in parabolic-hyperbolic fluid-structure interaction,, J. Diff. Eqns., 245 (2008), 737.  doi: 10.1016/j.jde.2007.10.036.  Google Scholar [10] G. Avalos and R. Triggiani, Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction,, Discr. Cont. Dynam. Sys., 2 (2009), 417.  doi: 10.3934/dcdss.2009.2.417.  Google Scholar [11] G. Avalos and R. Triggiani, Coupled parabolic-hyperbolic Stokes-Lamé PDE system: Limit behavior of the resolvent operator on the imaginary axis,, Applicable Analysis, 88 (2009), 1357.  doi: 10.1080/00036810903278513.  Google Scholar [12] G. Avalos and R. Triggiani, Boundary feedback stabilization of a coupled parabolic-hyperbolic Stokes-Lamé PDE system,, J. Evol. Eqns., 9 (2009), 341.  doi: 10.1007/s00028-009-0015-9.  Google Scholar [13] G. Avalos and R. Triggiani, Rational decay rates for a fluid-structure interaction model via a resolvent-based approach,, (2013)., (2013).   Google Scholar [14] V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Weak and strong solutions in nonlinear fluid-structure interactions,, in, 440 (2007), 55.   Google Scholar [15] A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups,, Math. Ann., 347 (2010), 455.  doi: 10.1007/s00208-009-0439-0.  Google Scholar [16] K. N. Boyadzhiev and N. Levan, Strong stability of Hilbert space contraction semigroups,, Stud. Sci. Math. Hung., 30 (1995), 162.   Google Scholar [17] H. Cohen and S. I. Rubinow, "Some Mathematical Topics in Biology,", Proc. Symp. on System Theory, (1965), 321.   Google Scholar [18] P. Constantin and C. Foias, "Navier-Stokes Equations,", Chicago Lectures in Mathematics, (1988).   Google Scholar [19] Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem,, Discr. Contin. Dynam. Sys., 9 (2003), 633.  doi: 10.3934/dcds.2003.9.633.  Google Scholar [20] T. Duyckaerts, Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface,, Asymptotic Analysis, 51 (2007), 17.   Google Scholar [21] L. Fatori and J. E. Muñoz Rivera, Rates of decay to weak thermoelastic Bresse system,, IMA J. Appl. Math., 75 (2010), 881.  doi: 10.1093/imamat/hxq038.  Google Scholar [22] B. Kellogg, Properties of solutions of elliptic boundary value problems,, in, (1972), 47.   Google Scholar [23] J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation,, J. Diff. Eqns., 50 (1983), 163.  doi: 10.1016/0022-0396(83)90073-6.  Google Scholar [24] I. Lasiecka, J.-L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second-order hyperbolic operators,, J. Math. Pures et Appl., 65 (1986), 149.   Google Scholar [25] I. Lasiecka and R. Triggiani, Exact boundary controllability for the wave equation with Neumann boundary control,, Appl. Math. Optimiz., 19 (1986), 243.   Google Scholar [26] I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions,, Appl. Math. Optim., 25 (1992), 189.  doi: 10.1007/BF01182480.  Google Scholar [27] I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations, Vol. I,", Cambridge University Press, (2000).   Google Scholar [28] I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations, Vol. II,", Cambridge University Press, (2000).   Google Scholar [29] I. Lasiecka and R. Triggiani, Sharp regularity for mixed second order hyperbolic equations of Neumann type, Part I: The $L_2$ boundary case ,, Annali Matem. Pura e Applicata, (1990), 285.   Google Scholar [30] I. Lasiecka and R. Triggiani, Sharp trace estimates of solutions to Kirchhoff and Euler Bernoulli equations ,, Applied Math. Optimization, (1993), 277.   Google Scholar [31] I. Lasiecka and R. Triggiani, A sharp trace regularity result of Kirchhoff and thermoelastic plate equations with free boundary conditions ,, Rocky Mountain. J.Math., (2000), 981.   Google Scholar [32] N. Levan, The stabilizability problem: A Hilbert space operator decomposition approach,, Special issue on the mathematical foundations of system theory, 25 (1978), 721.  doi: 10.1109/TCS.1978.1084539.  Google Scholar [33] J.-L. Lions, "Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires,", Dunod; Gauthier-Villars, (1969).   Google Scholar [34] J.-L. Lions and E. Magenes, "Non-homogeneous Boundary Value Problems and Applications, Vol. I,", Die Grundlehren der mathematischen Wissenschaften, (1972).   Google Scholar [35] Y. I. Lyubich and V. Q. Phóng, Asymptotic stability of linear differential equations in Banach space,, Stud. Math., 88 (1988), 37.   Google Scholar [36] J. P. Quinn and D. L. Russell, Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping,, Proc. Roy. Soc. Edinburgh Sect. A, 77 (1977), 97.   Google Scholar [37] , J. M. Rivera,, private communication, (2012).   Google Scholar [38] J. E. Muñoz Rivera and M. G. Naso, Asymptotic stability of semigroups associated with linear weak dissipative systems with memory,, JMAA, 326 (2007), 691.  doi: 10.1016/j.jmaa.2006.03.022.  Google Scholar [39] J. E. Muñoz Rivera, M. G. Naso and F. Vagni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory,, JMAA, 286 (2003), 692.  doi: 10.1016/S0022-247X(03)00511-0.  Google Scholar [40] D. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions,, SIAM Review, 20 (1978), 639.  doi: 10.1137/1020095.  Google Scholar [41] H. Sohr, "The Navier-Stokes Equations. An Elementary Functional Analytic Approach,", Birkhäuser Advanced Texts: Basler Lehrbücher, (2001).  doi: 10.1007/978-3-0348-8255-2.  Google Scholar [42] R. Triggiani, A cosine operator approach to modeling boundary input problems for hyperbolic systems,, in, 6 (1978), 380.   Google Scholar [43] R. Triggiani, Exact boundary controllability of $L_2(\Omega) \times H^{-1}(\Omega)$ of the wave equation with Dirichlet boundary control acting on a portion of the boundary and related problems,, Appl. Math. Optimiz., 18 (1988), 241.  doi: 10.1007/BF01443625.  Google Scholar [44] R. Triggiani, Wave equation on a bounded domain with boundary dissipation: An operator approach,, J. Math. Anal. Appl., 137 (1989), 438.  doi: 10.1016/0022-247X(89)90255-2.  Google Scholar [45] X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system in fluid-structure interaction,, Arch. Rat. Mech. Anal., 184 (2007), 49.  doi: 10.1007/s00205-006-0020-x.  Google Scholar
 [1] Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424 [2] Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395 [3] Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879 [4] George Avalos, Roberto Triggiani. Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 817-833. doi: 10.3934/dcds.2008.22.817 [5] Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295 [6] Salim Meddahi, David Mora. Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 269-287. doi: 10.3934/dcdss.2016.9.269 [7] George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations & Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557 [8] George Avalos, Roberto Triggiani. Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability. Evolution Equations & Control Theory, 2013, 2 (4) : 563-598. doi: 10.3934/eect.2013.2.563 [9] Gilbert Peralta. Uniform exponential stability of a fluid-plate interaction model due to thermal effects. Evolution Equations & Control Theory, 2020, 9 (1) : 39-60. doi: 10.3934/eect.2020016 [10] Jiahui Zhu, Zdzisław Brzeźniak. Nonlinear stochastic partial differential equations of hyperbolic type driven by Lévy-type noises. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3269-3299. doi: 10.3934/dcdsb.2016097 [11] Hermen Jan Hupkes, Emmanuelle Augeraud-Véron. Well-posedness of initial value problems for functional differential and algebraic equations of mixed type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 737-765. doi: 10.3934/dcds.2011.30.737 [12] Ravi P. Agarwal, Abdullah Özbekler. Lyapunov type inequalities for $n$th order forced differential equations with mixed nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2281-2300. doi: 10.3934/cpaa.2016037 [13] Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 633-650. doi: 10.3934/dcds.2003.9.633 [14] Masaki Hibino. Gevrey asymptotic theory for singular first order linear partial differential equations of nilpotent type — Part I —. Communications on Pure & Applied Analysis, 2003, 2 (2) : 211-231. doi: 10.3934/cpaa.2003.2.211 [15] T. Candan, R.S. Dahiya. Oscillation of mixed neutral differential equations with forcing term. Conference Publications, 2003, 2003 (Special) : 167-172. doi: 10.3934/proc.2003.2003.167 [16] Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115 [17] Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Fluid structure interaction problem with changing thickness beam and slightly compressible fluid. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1133-1148. doi: 10.3934/dcdss.2014.7.1133 [18] Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481 [19] Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703 [20] Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053

2018 Impact Factor: 1.048