-
Previous Article
Global existence for exterior problems of semilinear wave equations with the null condition in $2$D
- EECT Home
- This Issue
-
Next Article
Recovery of the sound speed and initial displacement for the wave equation by means of a single Dirichlet boundary measurement
A local existence result for a system of viscoelasticity with physical viscosity
1. | University of Pittsburgh, Department of Mathematics, 301 Thackeray Hall, Pittsburgh, PA 15260, United States |
2. | Institute of Applied Mathematics and Mechanics, University of Warsaw, ul. Banacha 2, 02097 Warszawa, Poland |
References:
[1] |
H. Amann, "Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory,", Monographs in Mathematics, 89 (1995).
doi: 10.1007/978-3-0348-9221-6. |
[2] |
G. Andrews, On the existence of solutions to the equation $u_{t t} = u_{x x t} + (u_x) _x$,, J. Diff. Eqs., 35 (1980), 200.
doi: 10.1016/0022-0396(80)90040-6. |
[3] |
S. Antmann and R. Malek-Madani, Travelling waves in nonlinearly viscoelastic media and shock structure in elastic media,, Quart. Appl. Math., 46 (1988), 77.
|
[4] |
S. Antman and T. Seidman, Quasilinear hyperbolic-parabolic equations of one-dimensional viscoelasticity,, J. Diff. Eqs., 124 (1996), 132.
doi: 10.1006/jdeq.1996.0005. |
[5] |
B. Barker, M. Lewicka and K. Zumbrun, Existence and stability of viscoelastic shock profiles,, Arch. Rational Mech. Anal., 200 (2011), 491.
doi: 10.1007/s00205-010-0363-1. |
[6] |
O. Besov, V. Il'in and S. Nikol'skiĭ, "Integral Representations of Functions and Imbedding Theorems. Vol. I,", Translated from the Russian, (1978).
|
[7] |
R. Chill and S. Srivastava, $L^p$-maximal regularity for second order Cauchy problems,, Math. Z., 251 (2005), 751.
doi: 10.1007/s00209-005-0815-8. |
[8] |
P. Clement and S. Li, Abstract parabolic quasilinear equations and application to a ground-water flow problem,, Adv. Math. Sci. Appl., 3 (): 17.
|
[9] |
C. Dafermos, The mixed initial-boundary value problem for the equations of one- dimensional nonlinear viscoelasticity,, J. Diff. Eqs., 6 (1969), 71.
|
[10] |
C. Dafermos, "Hyperbolic Conservation Laws in Continuum Physics,", Springer-Verlag, (1999). |
[11] |
R. Danchin and P. B. Mucha, A Lagrangian approach for the incompressible Navier-Stokes equations with variable density,, Comm. Pure Appl. Math., 65 (2012), 1458.
doi: 10.1002/cpa.21409. |
[12] |
S. Demoulini, Weak solutions for a class of nonlinear systems of viscoelasticity,, Arch. Rat. Mech. Anal., 155 (2000), 299.
doi: 10.1007/s002050000115. |
[13] |
R. Denk, M. Hieber and J. Prüss, $\mathcalR$-boundedness, Fourier multipliers and problems of elliptic and parabolic type,, Mem. Amer. Math. Soc., 166 (2003).
|
[14] |
G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations,", Springer Tracts in Natural Philosophy, 38, 39 (1994).
doi: 10.1007/978-0-387-09620-9. |
[15] |
D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).
|
[16] |
T. Hughes, T. Kato and J. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity,, Arch. Rational Mech. Anal., 63 (1977), 273.
|
[17] |
A. Korn, Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen,, Bull. Int. Cracovie Akademie Umiejet, (1909), 705. |
[18] |
O. Ladyzhenskaya, V. Solonnikov and N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Translation of Mathematical Monographs, 23 (1968). |
[19] |
M. Lewicka, L. Mahadevan and M. Pakzad, The Föppl-von Kármán equations for plates with incompatible strains,, Proceedings of the Royal Society A Math. Phys. Eng. Sci., 467 (2011), 402.
doi: 10.1098/rspa.2010.0138. |
[20] |
M. Lewicka and M. Pakzad, Scaling laws for non-Euclidean plates and the $W^{2,2}$ isometric immersions of Riemannian metrics,, ESAIM: Control, 17 (2011), 1158.
doi: 10.1051/cocv/2010039. |
[21] |
G. M. Lieberman, "Second Order Parabolic Differential Equations,", World Scientific Publishing Co., (1996).
|
[22] |
A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,", Progress in Nonlinear Differential Equations and their Applications, 16 (1995).
doi: 10.1007/978-3-0348-9234-6. |
[23] |
M. G. Mora and L. Scardia, Convergence of equilibria of thin elastic plates under physical growth conditions for the energy density,, J. Differential Equations, 252 (2012), 35.
doi: 10.1016/j.jde.2011.09.009. |
[24] |
S. Meyer and M. Wilke, Optimal regularity and long-time behavior of solutions for the Westervelt equation,, Appl. Math. Optim., 64 (2011), 257.
doi: 10.1007/s00245-011-9138-9. |
[25] |
P. B. Mucha, Limit of kinetic term for a Stefan problem,, Dis. Cont. Dynamical Syst., 2007 (): 741.
|
[26] |
P. B. Mucha and W. Zajączkowski, On a $L^p$-estimate for the linearized compressible Navier-Stokes equations with the Dirichlet boundary conditions,, J. Differential Equations, 186 (2002), 377.
doi: 10.1016/S0022-0396(02)00017-7. |
[27] |
R. Pego, Phase transitions in one-dimensional nonlinear viscoelasticity: Admissibility and stability,, Arch. Rational Mech. Anal., 97 (1987), 353.
doi: 10.1007/BF00280411. |
[28] |
P. Rybka, Dynamical modeling of phase transitions by means of viscoelasticity in many dimensions,, Proc. Roy. Soc. Edin. A, 121 (1992), 101.
doi: 10.1017/S0308210500014177. |
[29] |
B. Tvedt, Quasilinear equations for viscoelasticity of strain-rate type,, Arch. Rat. Mech. Anal., 189 (2008), 237.
doi: 10.1007/s00205-007-0109-x. |
show all references
References:
[1] |
H. Amann, "Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory,", Monographs in Mathematics, 89 (1995).
doi: 10.1007/978-3-0348-9221-6. |
[2] |
G. Andrews, On the existence of solutions to the equation $u_{t t} = u_{x x t} + (u_x) _x$,, J. Diff. Eqs., 35 (1980), 200.
doi: 10.1016/0022-0396(80)90040-6. |
[3] |
S. Antmann and R. Malek-Madani, Travelling waves in nonlinearly viscoelastic media and shock structure in elastic media,, Quart. Appl. Math., 46 (1988), 77.
|
[4] |
S. Antman and T. Seidman, Quasilinear hyperbolic-parabolic equations of one-dimensional viscoelasticity,, J. Diff. Eqs., 124 (1996), 132.
doi: 10.1006/jdeq.1996.0005. |
[5] |
B. Barker, M. Lewicka and K. Zumbrun, Existence and stability of viscoelastic shock profiles,, Arch. Rational Mech. Anal., 200 (2011), 491.
doi: 10.1007/s00205-010-0363-1. |
[6] |
O. Besov, V. Il'in and S. Nikol'skiĭ, "Integral Representations of Functions and Imbedding Theorems. Vol. I,", Translated from the Russian, (1978).
|
[7] |
R. Chill and S. Srivastava, $L^p$-maximal regularity for second order Cauchy problems,, Math. Z., 251 (2005), 751.
doi: 10.1007/s00209-005-0815-8. |
[8] |
P. Clement and S. Li, Abstract parabolic quasilinear equations and application to a ground-water flow problem,, Adv. Math. Sci. Appl., 3 (): 17.
|
[9] |
C. Dafermos, The mixed initial-boundary value problem for the equations of one- dimensional nonlinear viscoelasticity,, J. Diff. Eqs., 6 (1969), 71.
|
[10] |
C. Dafermos, "Hyperbolic Conservation Laws in Continuum Physics,", Springer-Verlag, (1999). |
[11] |
R. Danchin and P. B. Mucha, A Lagrangian approach for the incompressible Navier-Stokes equations with variable density,, Comm. Pure Appl. Math., 65 (2012), 1458.
doi: 10.1002/cpa.21409. |
[12] |
S. Demoulini, Weak solutions for a class of nonlinear systems of viscoelasticity,, Arch. Rat. Mech. Anal., 155 (2000), 299.
doi: 10.1007/s002050000115. |
[13] |
R. Denk, M. Hieber and J. Prüss, $\mathcalR$-boundedness, Fourier multipliers and problems of elliptic and parabolic type,, Mem. Amer. Math. Soc., 166 (2003).
|
[14] |
G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations,", Springer Tracts in Natural Philosophy, 38, 39 (1994).
doi: 10.1007/978-0-387-09620-9. |
[15] |
D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).
|
[16] |
T. Hughes, T. Kato and J. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity,, Arch. Rational Mech. Anal., 63 (1977), 273.
|
[17] |
A. Korn, Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen,, Bull. Int. Cracovie Akademie Umiejet, (1909), 705. |
[18] |
O. Ladyzhenskaya, V. Solonnikov and N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Translation of Mathematical Monographs, 23 (1968). |
[19] |
M. Lewicka, L. Mahadevan and M. Pakzad, The Föppl-von Kármán equations for plates with incompatible strains,, Proceedings of the Royal Society A Math. Phys. Eng. Sci., 467 (2011), 402.
doi: 10.1098/rspa.2010.0138. |
[20] |
M. Lewicka and M. Pakzad, Scaling laws for non-Euclidean plates and the $W^{2,2}$ isometric immersions of Riemannian metrics,, ESAIM: Control, 17 (2011), 1158.
doi: 10.1051/cocv/2010039. |
[21] |
G. M. Lieberman, "Second Order Parabolic Differential Equations,", World Scientific Publishing Co., (1996).
|
[22] |
A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,", Progress in Nonlinear Differential Equations and their Applications, 16 (1995).
doi: 10.1007/978-3-0348-9234-6. |
[23] |
M. G. Mora and L. Scardia, Convergence of equilibria of thin elastic plates under physical growth conditions for the energy density,, J. Differential Equations, 252 (2012), 35.
doi: 10.1016/j.jde.2011.09.009. |
[24] |
S. Meyer and M. Wilke, Optimal regularity and long-time behavior of solutions for the Westervelt equation,, Appl. Math. Optim., 64 (2011), 257.
doi: 10.1007/s00245-011-9138-9. |
[25] |
P. B. Mucha, Limit of kinetic term for a Stefan problem,, Dis. Cont. Dynamical Syst., 2007 (): 741.
|
[26] |
P. B. Mucha and W. Zajączkowski, On a $L^p$-estimate for the linearized compressible Navier-Stokes equations with the Dirichlet boundary conditions,, J. Differential Equations, 186 (2002), 377.
doi: 10.1016/S0022-0396(02)00017-7. |
[27] |
R. Pego, Phase transitions in one-dimensional nonlinear viscoelasticity: Admissibility and stability,, Arch. Rational Mech. Anal., 97 (1987), 353.
doi: 10.1007/BF00280411. |
[28] |
P. Rybka, Dynamical modeling of phase transitions by means of viscoelasticity in many dimensions,, Proc. Roy. Soc. Edin. A, 121 (1992), 101.
doi: 10.1017/S0308210500014177. |
[29] |
B. Tvedt, Quasilinear equations for viscoelasticity of strain-rate type,, Arch. Rat. Mech. Anal., 189 (2008), 237.
doi: 10.1007/s00205-007-0109-x. |
[1] |
Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635 |
[2] |
David M. Ambrose, Jerry L. Bona, David P. Nicholls. Well-posedness of a model for water waves with viscosity. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1113-1137. doi: 10.3934/dcdsb.2012.17.1113 |
[3] |
Borys Alvarez-Samaniego, Pascal Azerad. Existence of travelling-wave solutions and local well-posedness of the Fowler equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 671-692. doi: 10.3934/dcdsb.2009.12.671 |
[4] |
Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007 |
[5] |
Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257 |
[6] |
Irena Lasiecka, Mathias Wilke. Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5189-5202. doi: 10.3934/dcds.2013.33.5189 |
[7] |
Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Local existence with mild regularity for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 1011-1041. doi: 10.3934/krm.2013.6.1011 |
[8] |
Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813 |
[9] |
Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic & Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006 |
[10] |
Timur Akhunov. Local well-posedness of quasi-linear systems generalizing KdV. Communications on Pure & Applied Analysis, 2013, 12 (2) : 899-921. doi: 10.3934/cpaa.2013.12.899 |
[11] |
Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126 |
[12] |
Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673 |
[13] |
Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139 |
[14] |
Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195 |
[15] |
Yongye Zhao, Yongsheng Li, Wei Yan. Local Well-posedness and Persistence Property for the Generalized Novikov Equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 803-820. doi: 10.3934/dcds.2014.34.803 |
[16] |
Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321 |
[17] |
Hyungjin Huh, Bora Moon. Low regularity well-posedness for Gross-Neveu equations. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1903-1913. doi: 10.3934/cpaa.2015.14.1903 |
[18] |
Saoussen Sokrani. On the global well-posedness of 3-D Boussinesq system with partial viscosity and axisymmetric data. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1613-1650. doi: 10.3934/dcds.2019072 |
[19] |
Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393 |
[20] |
Jeremy LeCrone, Gieri Simonett. Continuous maximal regularity and analytic semigroups. Conference Publications, 2011, 2011 (Special) : 963-970. doi: 10.3934/proc.2011.2011.963 |
2017 Impact Factor: 1.049
Tools
Metrics
Other articles
by authors
[Back to Top]