# American Institute of Mathematical Sciences

December  2013, 2(4): 631-667. doi: 10.3934/eect.2013.2.631

## Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions

 1 Department of Mathematics, University of Virginia, Charlottesville, VA 22904, United States 2 Department of Mathematics, University of Memphis, Memphis, TN 38152-3370, IBS, Polish Academy of Sciences, Warsaw, Poland

Received  April 2013 Revised  September 2013 Published  November 2013

We present an analysis of regularity and stability of solutions corresponding to wave equation with dynamic boundary conditions. It has been known since the pioneering work by [26, 27, 30] that addition of dynamics to the boundary may change drastically both regularity and stability properties of the underlying system. We shall investigate these properties in the context of wave equation with the damping affecting either the interior dynamics or the boundary dynamics or both.
This leads to a consideration of a wave equation acting on a bounded 3-d domain coupled with another second order dynamics acting on the boundary. The wave equation is equipped with a viscoelastic damping, zero Dirichlet boundary conditions on a portion of the boundary and dynamic boundary conditions. These are general Wentzell type of boundary conditions which describe wave equation oscillating on a tangent manifold of a lower dimension. We shall examine regularity and stability properties of the resulting system -as a function of strength and location of the dissipation. Properties such as well-posedness of finite energy solutions, analyticity of the associated semigroup, strong and uniform stability will be discussed.
The results obtained analytically are illustrated by numerical analysis. The latter shows the impact of various types of dissipation on the spectrum of the generator as well as the dynamic behavior of the solution on a rectangular domain.
Citation: Nicolas Fourrier, Irena Lasiecka. Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evolution Equations & Control Theory, 2013, 2 (4) : 631-667. doi: 10.3934/eect.2013.2.631
##### References:
 [1] B. Andràs and K. J Engel, Abstract wave equations with generalized Wentzell boundary conditions,, Journal of Differential Equations, 207 (2004), 1.  doi: 10.1016/j.jde.2003.12.005.  Google Scholar [2] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups,, Trans. Amer. Math. Soc., 306 (1988), 837.  doi: 10.1090/S0002-9947-1988-0933321-3.  Google Scholar [3] G. Avalos and I. Lasiecka, The strong stability of a semigroup arising from a coupled hyperbolic/parabolic system,, Semigroup Forum, 57 (1998), 278.  doi: 10.1007/PL00005977.  Google Scholar [4] G. Avalos and D. Toundykov, Boundary stabilization of structural acoustic interactions with interface on a Reissner-Mindlin plate,, Nonlinear Anal. Real World Appl., 12 (2011), 2985.  doi: 10.1016/j.nonrwa.2011.05.001.  Google Scholar [5] J. T. Beale and S. I. Rosencrans, Acoustic boundary conditions,, Bull. Amer. Math. Soc., 80 (1974), 1276.  doi: 10.1090/S0002-9904-1974-13714-6.  Google Scholar [6] J. T. Beale, Spectral properties of an acoustic boundary condition,, Indiana Univ. Math. J., 25 (1976), 895.  doi: 10.1512/iumj.1976.25.25071.  Google Scholar [7] J. T. Beale, Acoustic scattering from locally reacting surfaces,, Indiana Univ. Math. J., 26 (1977), 199.  doi: 10.1512/iumj.1977.26.26015.  Google Scholar [8] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,, Texts in Applied Mathematics, (1994).   Google Scholar [9] A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups,, Math. Ann., 347 (2010), 455.  doi: 10.1007/s00208-009-0439-0.  Google Scholar [10] S. Čanić and A. Mikelić, Effective equations modeling the flow of a viscous incompressible fluid through a long elastic tube arising in the study of blood flow through small arteries,, SIAM J. Appl. Dyn. Syst., 2 (2003), 431.  doi: 10.1137/S1111111102411286.  Google Scholar [11] S. P. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems,, Pacific J. Math., 136 (1989), 15.  doi: 10.2140/pjm.1989.136.15.  Google Scholar [12] A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary condition,, Journal of Evolution Equations, 2 (2002), 1.  doi: 10.1007/s00028-002-8077-y.  Google Scholar [13] A. Favini, C. Gal, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The non-autonomous wave equation with general Wentzell boundary conditions,, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 135 (2005), 317.  doi: 10.1017/S0308210500003905.  Google Scholar [14] A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem,, Math. Nachr., 283 (2010), 504.  doi: 10.1002/mana.200910086.  Google Scholar [15] B. Friedman, Principles and Techniques of Applied Mathematics,, John Wiley & Sons, (1956).   Google Scholar [16] C. Gal, G. R. Goldstein and J. A. Goldstein, Oscillatory boundary conditions for acoustic wave equations,, Journal of Evolution Equations, 3 (2003), 623.  doi: 10.1007/s00028-003-0113-z.  Google Scholar [17] S. Gerbi and B. Said-Houari, Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions,, Nonlinear Anal., 74 (2011), 7137.  doi: 10.1016/j.na.2011.07.026.  Google Scholar [18] S. Gerbi and B. Said-Houari, Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions,, Adv. Differential Equations, 13 (2008), 1051.   Google Scholar [19] P. J. Graber and B. Said-Houari, Existence and asymptotic behavior of the wave equation with dynamic boundary conditions,, Appl. Math. Optim., 66 (2012), 81.  doi: 10.1007/s00245-012-9165-1.  Google Scholar [20] P. J. Graber, Uniform boundary stabilization of a wave equation with nonlinear acoustic boundary conditions and nonlinear boundary damping,, Journal of Evolution Equations, 12 (2012), 141.  doi: 10.1007/s00028-011-0127-x.  Google Scholar [21] A. Haraux and M. Otani, Analyticity and regularity for a class of second order evolution equations,, Evolution Equations and Control Theory, 2 (2013), 101.  doi: 10.3934/eect.2013.2.101.  Google Scholar [22] M. A. Horn and W. Littman, Local smoothing properties of a Schrödinger equation with nonconstant principal part,, In: Modelling and optimization of distributed parameter systems, (1996), 104.   Google Scholar [23] M. A. Horn and W. Littman, Boundary control of a Schrödinger equation with nonconstant principal part,, In: Control of partial differential equations and applications, 174 (1996), 101.   Google Scholar [24] J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation,, J. Differential Equations, 50 (1983), 163.  doi: 10.1016/0022-0396(83)90073-6.  Google Scholar [25] W. Littman, The wave operator and $L_p$ norms,, J. Math. Mech., 12 (1963), 55.   Google Scholar [26] W. Littman and L. Markus, Exact boundary controllability of a hybrid system of elasticity,, Archive for Rational Mechanics and Analysis, 103 (1988), 193.  doi: 10.1007/BF00251758.  Google Scholar [27] W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping,, Annali di Matematica Pura ed Applicata, 152 (1988), 281.  doi: 10.1007/BF01766154.  Google Scholar [28] W. Littman and S. Taylor, Smoothing evolution equations and boundary control theory,, J. Anal. Math., 59 (1992), 117.  doi: 10.1007/BF02790221.  Google Scholar [29] W. Littman and S. Taylor, Local smoothing and energy decay for a semi-infinite beam pinned at several points, and applications to boundary control,, In: Differential equations, 152 (1994), 683.   Google Scholar [30] W. Littman and B. Liu, On the spectral properties and stabilization of acoustic flow,, SIAM J. Appl. Math., 59 (1999), 17.  doi: 10.1137/S0036139996314106.  Google Scholar [31] W. Littman and S. Taylor, The heat and Schrödinger equations: Boundary control with one shot,, In: Control Methods in PDE-dynamical Systems, 426 (2007), 293.  doi: 10.1090/conm/426/08194.  Google Scholar [32] G. Lumer and R. S. Phillips, On the spectral properties and stabilization of acoustic flow,, Pacific J. Math., 11 (1961), 679.  doi: 10.2140/pjm.1961.11.679.  Google Scholar [33] T. Meurer and A. Kugi, Tracking control design for a wave equation with dynamic boundary conditions modeling a piezoelectric stack actuator,, International Journal of Robust and Nonlinear Control, 21 (2011), 542.  doi: 10.1002/rnc.1611.  Google Scholar [34] P. M. Morse and K. U. Ingard, Theoretical Acoustics,, Princeton University Press, (1987).   Google Scholar [35] D. Mugnolo, Abstract wave equations with acoustic boundary conditions,, Math. Nachr., 279 (2006), 299.  doi: 10.1002/mana.200310362.  Google Scholar [36] D. Mugnolo, Damped wave equations with dynamic boundary conditions,, J. Appl. Anal., 17 (2011), 241.  doi: 10.1515/JAA.2011.015.  Google Scholar [37] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar [38] M. Renardy, On the stability of differentiability of semigroups,, Semigroup Forum, 51 (1995), 343.  doi: 10.1007/BF02573642.  Google Scholar [39] S. Taylor, Gevrey's Semigroups,, Ph.D. Thesis, (1989).   Google Scholar [40] S. Taylor, Gevrey smoothing properties of the Schrödinger evolution group in weighted Sobolev spaces,, J. Math. Anal. Appl., 194 (1995), 14.  doi: 10.1006/jmaa.1995.1284.  Google Scholar [41] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems,, Second edition. Springer Series in Computational Mathematics, (2006).   Google Scholar [42] R. Triggiani, Wave equation on a bounded domain with boundary dissipation: an operator approach,, In: Operator methods for optimal control problems, 108 (1987), 283.   Google Scholar [43] R. P. Vito and S. A. Dixon, Blood Vessel Constitutive Models,, Annual Review of Biomedical Engineering, 5 (2003), 413.   Google Scholar [44] T. J. Xiao and J. Liang, A solution to an open problem for wave equations with generalized Wentzell boundary conditions,, Mathematische Annalen, 327 (2003), 351.  doi: 10.1007/s00208-003-0457-2.  Google Scholar [45] T. J. Xiao and J. Liang, Complete second order differential equations in Banach spaces with dynamic boundary condition,, J. Differential Equations, 200 (2004), 105.  doi: 10.1016/j.jde.2004.01.011.  Google Scholar [46] T. J. Xiao and J. Liang, Second order parabolic equations in Banach spaces with dynamic boundary conditions,, Trans. Amer. Math. Soc., 356 (2004), 4787.  doi: 10.1090/S0002-9947-04-03704-3.  Google Scholar

show all references

##### References:
 [1] B. Andràs and K. J Engel, Abstract wave equations with generalized Wentzell boundary conditions,, Journal of Differential Equations, 207 (2004), 1.  doi: 10.1016/j.jde.2003.12.005.  Google Scholar [2] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups,, Trans. Amer. Math. Soc., 306 (1988), 837.  doi: 10.1090/S0002-9947-1988-0933321-3.  Google Scholar [3] G. Avalos and I. Lasiecka, The strong stability of a semigroup arising from a coupled hyperbolic/parabolic system,, Semigroup Forum, 57 (1998), 278.  doi: 10.1007/PL00005977.  Google Scholar [4] G. Avalos and D. Toundykov, Boundary stabilization of structural acoustic interactions with interface on a Reissner-Mindlin plate,, Nonlinear Anal. Real World Appl., 12 (2011), 2985.  doi: 10.1016/j.nonrwa.2011.05.001.  Google Scholar [5] J. T. Beale and S. I. Rosencrans, Acoustic boundary conditions,, Bull. Amer. Math. Soc., 80 (1974), 1276.  doi: 10.1090/S0002-9904-1974-13714-6.  Google Scholar [6] J. T. Beale, Spectral properties of an acoustic boundary condition,, Indiana Univ. Math. J., 25 (1976), 895.  doi: 10.1512/iumj.1976.25.25071.  Google Scholar [7] J. T. Beale, Acoustic scattering from locally reacting surfaces,, Indiana Univ. Math. J., 26 (1977), 199.  doi: 10.1512/iumj.1977.26.26015.  Google Scholar [8] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,, Texts in Applied Mathematics, (1994).   Google Scholar [9] A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups,, Math. Ann., 347 (2010), 455.  doi: 10.1007/s00208-009-0439-0.  Google Scholar [10] S. Čanić and A. Mikelić, Effective equations modeling the flow of a viscous incompressible fluid through a long elastic tube arising in the study of blood flow through small arteries,, SIAM J. Appl. Dyn. Syst., 2 (2003), 431.  doi: 10.1137/S1111111102411286.  Google Scholar [11] S. P. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems,, Pacific J. Math., 136 (1989), 15.  doi: 10.2140/pjm.1989.136.15.  Google Scholar [12] A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary condition,, Journal of Evolution Equations, 2 (2002), 1.  doi: 10.1007/s00028-002-8077-y.  Google Scholar [13] A. Favini, C. Gal, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The non-autonomous wave equation with general Wentzell boundary conditions,, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 135 (2005), 317.  doi: 10.1017/S0308210500003905.  Google Scholar [14] A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem,, Math. Nachr., 283 (2010), 504.  doi: 10.1002/mana.200910086.  Google Scholar [15] B. Friedman, Principles and Techniques of Applied Mathematics,, John Wiley & Sons, (1956).   Google Scholar [16] C. Gal, G. R. Goldstein and J. A. Goldstein, Oscillatory boundary conditions for acoustic wave equations,, Journal of Evolution Equations, 3 (2003), 623.  doi: 10.1007/s00028-003-0113-z.  Google Scholar [17] S. Gerbi and B. Said-Houari, Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions,, Nonlinear Anal., 74 (2011), 7137.  doi: 10.1016/j.na.2011.07.026.  Google Scholar [18] S. Gerbi and B. Said-Houari, Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions,, Adv. Differential Equations, 13 (2008), 1051.   Google Scholar [19] P. J. Graber and B. Said-Houari, Existence and asymptotic behavior of the wave equation with dynamic boundary conditions,, Appl. Math. Optim., 66 (2012), 81.  doi: 10.1007/s00245-012-9165-1.  Google Scholar [20] P. J. Graber, Uniform boundary stabilization of a wave equation with nonlinear acoustic boundary conditions and nonlinear boundary damping,, Journal of Evolution Equations, 12 (2012), 141.  doi: 10.1007/s00028-011-0127-x.  Google Scholar [21] A. Haraux and M. Otani, Analyticity and regularity for a class of second order evolution equations,, Evolution Equations and Control Theory, 2 (2013), 101.  doi: 10.3934/eect.2013.2.101.  Google Scholar [22] M. A. Horn and W. Littman, Local smoothing properties of a Schrödinger equation with nonconstant principal part,, In: Modelling and optimization of distributed parameter systems, (1996), 104.   Google Scholar [23] M. A. Horn and W. Littman, Boundary control of a Schrödinger equation with nonconstant principal part,, In: Control of partial differential equations and applications, 174 (1996), 101.   Google Scholar [24] J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation,, J. Differential Equations, 50 (1983), 163.  doi: 10.1016/0022-0396(83)90073-6.  Google Scholar [25] W. Littman, The wave operator and $L_p$ norms,, J. Math. Mech., 12 (1963), 55.   Google Scholar [26] W. Littman and L. Markus, Exact boundary controllability of a hybrid system of elasticity,, Archive for Rational Mechanics and Analysis, 103 (1988), 193.  doi: 10.1007/BF00251758.  Google Scholar [27] W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping,, Annali di Matematica Pura ed Applicata, 152 (1988), 281.  doi: 10.1007/BF01766154.  Google Scholar [28] W. Littman and S. Taylor, Smoothing evolution equations and boundary control theory,, J. Anal. Math., 59 (1992), 117.  doi: 10.1007/BF02790221.  Google Scholar [29] W. Littman and S. Taylor, Local smoothing and energy decay for a semi-infinite beam pinned at several points, and applications to boundary control,, In: Differential equations, 152 (1994), 683.   Google Scholar [30] W. Littman and B. Liu, On the spectral properties and stabilization of acoustic flow,, SIAM J. Appl. Math., 59 (1999), 17.  doi: 10.1137/S0036139996314106.  Google Scholar [31] W. Littman and S. Taylor, The heat and Schrödinger equations: Boundary control with one shot,, In: Control Methods in PDE-dynamical Systems, 426 (2007), 293.  doi: 10.1090/conm/426/08194.  Google Scholar [32] G. Lumer and R. S. Phillips, On the spectral properties and stabilization of acoustic flow,, Pacific J. Math., 11 (1961), 679.  doi: 10.2140/pjm.1961.11.679.  Google Scholar [33] T. Meurer and A. Kugi, Tracking control design for a wave equation with dynamic boundary conditions modeling a piezoelectric stack actuator,, International Journal of Robust and Nonlinear Control, 21 (2011), 542.  doi: 10.1002/rnc.1611.  Google Scholar [34] P. M. Morse and K. U. Ingard, Theoretical Acoustics,, Princeton University Press, (1987).   Google Scholar [35] D. Mugnolo, Abstract wave equations with acoustic boundary conditions,, Math. Nachr., 279 (2006), 299.  doi: 10.1002/mana.200310362.  Google Scholar [36] D. Mugnolo, Damped wave equations with dynamic boundary conditions,, J. Appl. Anal., 17 (2011), 241.  doi: 10.1515/JAA.2011.015.  Google Scholar [37] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar [38] M. Renardy, On the stability of differentiability of semigroups,, Semigroup Forum, 51 (1995), 343.  doi: 10.1007/BF02573642.  Google Scholar [39] S. Taylor, Gevrey's Semigroups,, Ph.D. Thesis, (1989).   Google Scholar [40] S. Taylor, Gevrey smoothing properties of the Schrödinger evolution group in weighted Sobolev spaces,, J. Math. Anal. Appl., 194 (1995), 14.  doi: 10.1006/jmaa.1995.1284.  Google Scholar [41] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems,, Second edition. Springer Series in Computational Mathematics, (2006).   Google Scholar [42] R. Triggiani, Wave equation on a bounded domain with boundary dissipation: an operator approach,, In: Operator methods for optimal control problems, 108 (1987), 283.   Google Scholar [43] R. P. Vito and S. A. Dixon, Blood Vessel Constitutive Models,, Annual Review of Biomedical Engineering, 5 (2003), 413.   Google Scholar [44] T. J. Xiao and J. Liang, A solution to an open problem for wave equations with generalized Wentzell boundary conditions,, Mathematische Annalen, 327 (2003), 351.  doi: 10.1007/s00208-003-0457-2.  Google Scholar [45] T. J. Xiao and J. Liang, Complete second order differential equations in Banach spaces with dynamic boundary condition,, J. Differential Equations, 200 (2004), 105.  doi: 10.1016/j.jde.2004.01.011.  Google Scholar [46] T. J. Xiao and J. Liang, Second order parabolic equations in Banach spaces with dynamic boundary conditions,, Trans. Amer. Math. Soc., 356 (2004), 4787.  doi: 10.1090/S0002-9947-04-03704-3.  Google Scholar
 [1] Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267 [2] Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275 [3] Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432 [4] A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441 [5] Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074 [6] Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348 [7] Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450 [8] Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 [9] Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 [10] Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463 [11] Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 [12] Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443 [13] Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251 [14] Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436 [15] Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045 [16] Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273 [17] João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 [18] Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346 [19] Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457 [20] Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

2019 Impact Factor: 0.953