2013, 2(4): 723-731. doi: 10.3934/eect.2013.2.723

Optimal control of a diffusion/reaction/switching system

1. 

Department of Mathematics and Statistics, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250

Received  November 2012 Revised  June 2013 Published  November 2013

We consider an optimal control problem involving the use of bacteria for pollution removal where the model assumes the bacteria switch instantaneously between active and dormant states, determined by threshold sensitivity to the local concentration $v$ of a diffusing critical nutrient; compare [7], [3], [6] in which nutrient transport is convective. It is shown that the direct problem has a solution for each boundary control $ψ = ∂v/∂n$ and that optimal controls exist, minimizing a combination of residual pollutant and aggregated cost of the nutrient.
Citation: Thomas I. Seidman. Optimal control of a diffusion/reaction/switching system. Evolution Equations & Control Theory, 2013, 2 (4) : 723-731. doi: 10.3934/eect.2013.2.723
References:
[1]

T. C. Hazen, Cometabolic Bioremediation (Ch. 7, pp. 2505-2514) and In Situ Groundwater Bioremediation (Ch. 13, pp. 2583-2596), in Handbook of Hydrocarbon Lipid Microbiology, (2010).

[2]

M. A. Krasnosel'skĭi and A. V. Pokrovskiĭ, Systems with Hysteresis,, Translated from the Russian by Marek Niezgódka. Springer-Verlag, (1989). doi: 10.1007/978-3-642-61302-9.

[3]

S. Lenhart, T. I. Seidman and J. Yong, Optimal control of a bioreactor with modal switching,, Math. Models Methods in Appl. Sci., 11 (2001), 933. doi: 10.1142/S0218202501001185.

[4]

R. D. Norris, et al., Handbook of Bioremediation,, Lewis Publishers, (1994).

[5]

T. I. Seidman, Switching systems: Thermostats and periodicity,, Math. Res. Report 83-07, 83-07 (1983), 83.

[6]

T. I. Seidman, A 1-dimensional bioremediation model with modal switching,, in Control of Distributed Parameter and Stochastic Systems, (1999), 127.

[7]

T. I. Seidman, A convection/reaction/switching system,, Nonlinear Anal. - TMA, 67 (2007), 2060. doi: 10.1016/j.na.2006.08.050.

[8]

T. I. Seidman, Some aspects of modeling with discontinuities,, Int'l. J. Evolution Eqns., 3 (2009), 419.

[9]

G. Stampacchia, Equations Elliptiques Du Second Ordre á Coefficients Discontinues,, (French) Séminaire de Mathématiques Supérieures, (1965).

[10]

E. Venkataramani and R. Ahlert, Role of cometabolism in biological oxidation of synthetic compounds,, Biotechnology and Bioengineering, 27 (1985), 1306. doi: 10.1002/bit.260270906.

[11]

A. Visintin, Differential Models of Hysteresis,, Applied Mathematical Sciences, (1994).

show all references

References:
[1]

T. C. Hazen, Cometabolic Bioremediation (Ch. 7, pp. 2505-2514) and In Situ Groundwater Bioremediation (Ch. 13, pp. 2583-2596), in Handbook of Hydrocarbon Lipid Microbiology, (2010).

[2]

M. A. Krasnosel'skĭi and A. V. Pokrovskiĭ, Systems with Hysteresis,, Translated from the Russian by Marek Niezgódka. Springer-Verlag, (1989). doi: 10.1007/978-3-642-61302-9.

[3]

S. Lenhart, T. I. Seidman and J. Yong, Optimal control of a bioreactor with modal switching,, Math. Models Methods in Appl. Sci., 11 (2001), 933. doi: 10.1142/S0218202501001185.

[4]

R. D. Norris, et al., Handbook of Bioremediation,, Lewis Publishers, (1994).

[5]

T. I. Seidman, Switching systems: Thermostats and periodicity,, Math. Res. Report 83-07, 83-07 (1983), 83.

[6]

T. I. Seidman, A 1-dimensional bioremediation model with modal switching,, in Control of Distributed Parameter and Stochastic Systems, (1999), 127.

[7]

T. I. Seidman, A convection/reaction/switching system,, Nonlinear Anal. - TMA, 67 (2007), 2060. doi: 10.1016/j.na.2006.08.050.

[8]

T. I. Seidman, Some aspects of modeling with discontinuities,, Int'l. J. Evolution Eqns., 3 (2009), 419.

[9]

G. Stampacchia, Equations Elliptiques Du Second Ordre á Coefficients Discontinues,, (French) Séminaire de Mathématiques Supérieures, (1965).

[10]

E. Venkataramani and R. Ahlert, Role of cometabolism in biological oxidation of synthetic compounds,, Biotechnology and Bioengineering, 27 (1985), 1306. doi: 10.1002/bit.260270906.

[11]

A. Visintin, Differential Models of Hysteresis,, Applied Mathematical Sciences, (1994).

[1]

Wandi Ding. Optimal control on hybrid ODE Systems with application to a tick disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 633-659. doi: 10.3934/mbe.2007.4.633

[2]

Kathrin Flasskamp, Sebastian Hage-Packhäuser, Sina Ober-Blöbaum. Symmetry exploiting control of hybrid mechanical systems. Journal of Computational Dynamics, 2015, 2 (1) : 25-50. doi: 10.3934/jcd.2015.2.25

[3]

Sébastien Court, Karl Kunisch, Laurent Pfeiffer. Hybrid optimal control problems for a class of semilinear parabolic equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1031-1060. doi: 10.3934/dcdss.2018060

[4]

David L. Russell. Control via decoupling of a class of second order linear hybrid systems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1321-1334. doi: 10.3934/dcdss.2014.7.1321

[5]

David L. Russell. Modeling and control of hybrid beam systems with rotating tip component. Evolution Equations & Control Theory, 2014, 3 (2) : 305-329. doi: 10.3934/eect.2014.3.305

[6]

Yanli Han, Yan Gao. Determining the viability for hybrid control systems on a region with piecewise smooth boundary. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 1-9. doi: 10.3934/naco.2015.5.1

[7]

Divya Thakur, Belinda Marchand. Hybrid optimal control for HIV multi-drug therapies: A finite set control transcription approach. Mathematical Biosciences & Engineering, 2012, 9 (4) : 899-914. doi: 10.3934/mbe.2012.9.899

[8]

Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial & Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275

[9]

Abderrahim Azouani, Edriss S. Titi. Feedback control of nonlinear dissipative systems by finite determining parameters - A reaction-diffusion paradigm. Evolution Equations & Control Theory, 2014, 3 (4) : 579-594. doi: 10.3934/eect.2014.3.579

[10]

Ellina Grigorieva, Evgenii Khailov. Optimal control of a nonlinear model of economic growth. Conference Publications, 2007, 2007 (Special) : 456-466. doi: 10.3934/proc.2007.2007.456

[11]

Piermarco Cannarsa, Carlo Sinestrari. On a class of nonlinear time optimal control problems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 285-300. doi: 10.3934/dcds.1995.1.285

[12]

Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861

[13]

Michael Basin, Pablo Rodriguez-Ramirez. An optimal impulsive control regulator for linear systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 275-282. doi: 10.3934/naco.2011.1.275

[14]

Elena Goncharova, Maxim Staritsyn. Optimal control of dynamical systems with polynomial impulses. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4367-4384. doi: 10.3934/dcds.2015.35.4367

[15]

Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial & Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1

[16]

Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial & Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63

[17]

Simone Göttlich, Patrick Schindler. Optimal inflow control of production systems with finite buffers. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 107-127. doi: 10.3934/dcdsb.2015.20.107

[18]

Leonardo Colombo, David Martín de Diego. Optimal control of underactuated mechanical systems with symmetries. Conference Publications, 2013, 2013 (special) : 149-158. doi: 10.3934/proc.2013.2013.149

[19]

Urszula Ledzewicz, Stanislaw Walczak. Optimal control of systems governed by some elliptic equations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 279-290. doi: 10.3934/dcds.1999.5.279

[20]

Luca Galbusera, Sara Pasquali, Gianni Gilioli. Stability and optimal control for some classes of tritrophic systems. Mathematical Biosciences & Engineering, 2014, 11 (2) : 257-283. doi: 10.3934/mbe.2014.11.257

2016 Impact Factor: 0.826

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]