-
Previous Article
Locally smooth unitary groups and applications to boundary control of PDEs
- EECT Home
- This Issue
-
Next Article
Study on the order of events in optimal control of a harvesting problem modeled by integrodifference equations
The approximate controllability of a model for mutant selection
1. | School of Mathematics, University of Minnesota, 206 Church Street, Minneapolis, MN 55455 |
References:
[1] |
D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve propagation,, in Partial Differential Equations and Related Topics, 446 (1975), 5.
|
[2] |
R. A. Fisher, The advance of advantageous genes,, Ann. of Eugen, 7 (1937), 355.
doi: 10.1111/j.1469-1809.1937.tb02153.x. |
[3] |
V. A. Kostitzin, Mathematical biology,, Lecture Notes in Biomathematics, 22 (1978), 413. |
[4] |
W. Littman and L. Markus, Exact boundary controllability of a hybrid system of elasticity,, Arch. Rational Mech. Anal., 103 (1988), 193.
doi: 10.1007/BF00251758. |
[5] |
W. Littman and L. Markus, Remarks on exact controllability and stabilization of a hybrid system in elasticity through boundary damping,, Control of partial differential equations (Santiago de Compostela, (1989), 202.
doi: 10.1007/BFb0002593. |
[6] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations,, Corrected reprint of the 1967 original. Springer-Verlag, (1967).
doi: 10.1007/978-1-4612-5282-5. |
[7] |
P. Souplet and M. Winkler, The influence of space dimension on the large-time behavior in a reaction-diffusion system modeling diallelic selection,, J. Math. Biol., 62 (2011), 391.
doi: 10.1007/s00285-010-0339-7. |
[8] |
P. Souplet and M. Winkler, Classification of large-time behaviors in a rection-diffusion system modeling diallelic selection,, Math. Biosciences, 239 (2012), 191.
doi: 10.1016/j.mbs.2012.05.005. |
[9] |
H. F. Weinberger, The retreat of the less fit allele in a population-controlled model for population genetics,, J. Math. Biol., 67 (2013).
doi: 10.1007/s00285-013-0673-7. |
show all references
References:
[1] |
D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve propagation,, in Partial Differential Equations and Related Topics, 446 (1975), 5.
|
[2] |
R. A. Fisher, The advance of advantageous genes,, Ann. of Eugen, 7 (1937), 355.
doi: 10.1111/j.1469-1809.1937.tb02153.x. |
[3] |
V. A. Kostitzin, Mathematical biology,, Lecture Notes in Biomathematics, 22 (1978), 413. |
[4] |
W. Littman and L. Markus, Exact boundary controllability of a hybrid system of elasticity,, Arch. Rational Mech. Anal., 103 (1988), 193.
doi: 10.1007/BF00251758. |
[5] |
W. Littman and L. Markus, Remarks on exact controllability and stabilization of a hybrid system in elasticity through boundary damping,, Control of partial differential equations (Santiago de Compostela, (1989), 202.
doi: 10.1007/BFb0002593. |
[6] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations,, Corrected reprint of the 1967 original. Springer-Verlag, (1967).
doi: 10.1007/978-1-4612-5282-5. |
[7] |
P. Souplet and M. Winkler, The influence of space dimension on the large-time behavior in a reaction-diffusion system modeling diallelic selection,, J. Math. Biol., 62 (2011), 391.
doi: 10.1007/s00285-010-0339-7. |
[8] |
P. Souplet and M. Winkler, Classification of large-time behaviors in a rection-diffusion system modeling diallelic selection,, Math. Biosciences, 239 (2012), 191.
doi: 10.1016/j.mbs.2012.05.005. |
[9] |
H. F. Weinberger, The retreat of the less fit allele in a population-controlled model for population genetics,, J. Math. Biol., 67 (2013).
doi: 10.1007/s00285-013-0673-7. |
[1] |
Reinhard Bürger. A survey of migration-selection models in population genetics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 883-959. doi: 10.3934/dcdsb.2014.19.883 |
[2] |
Guillaume Olive. Boundary approximate controllability of some linear parabolic systems. Evolution Equations & Control Theory, 2014, 3 (1) : 167-189. doi: 10.3934/eect.2014.3.167 |
[3] |
Zhilan Feng, Carlos Castillo-Chavez. The influence of infectious diseases on population genetics. Mathematical Biosciences & Engineering, 2006, 3 (3) : 467-483. doi: 10.3934/mbe.2006.3.467 |
[4] |
Lianwen Wang. Approximate controllability and approximate null controllability of semilinear systems. Communications on Pure & Applied Analysis, 2006, 5 (4) : 953-962. doi: 10.3934/cpaa.2006.5.953 |
[5] |
Peng Zhou, Jiang Yu, Dongmei Xiao. A nonlinear diffusion problem arising in population genetics. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 821-841. doi: 10.3934/dcds.2014.34.821 |
[6] |
Franck Boyer, Guillaume Olive. Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients. Mathematical Control & Related Fields, 2014, 4 (3) : 263-287. doi: 10.3934/mcrf.2014.4.263 |
[7] |
Jinyuan Zhang, Aimin Zhou, Guixu Zhang, Hu Zhang. A clustering based mate selection for evolutionary optimization. Big Data & Information Analytics, 2017, 2 (1) : 77-85. doi: 10.3934/bdia.2017010 |
[8] |
Kimie Nakashima, Wei-Ming Ni, Linlin Su. An indefinite nonlinear diffusion problem in population genetics, I: Existence and limiting profiles. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 617-641. doi: 10.3934/dcds.2010.27.617 |
[9] |
Yuan Lou, Wei-Ming Ni, Linlin Su. An indefinite nonlinear diffusion problem in population genetics, II: Stability and multiplicity. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 643-655. doi: 10.3934/dcds.2010.27.643 |
[10] |
Bao-Zhu Guo, Liang Zhang. Local exact controllability to positive trajectory for parabolic system of chemotaxis. Mathematical Control & Related Fields, 2016, 6 (1) : 143-165. doi: 10.3934/mcrf.2016.6.143 |
[11] |
Enrique Fernández-Cara, Luz de Teresa. Null controllability of a cascade system of parabolic-hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 699-714. doi: 10.3934/dcds.2004.11.699 |
[12] |
Jim M. Cushing. The evolutionary dynamics of a population model with a strong Allee effect. Mathematical Biosciences & Engineering, 2015, 12 (4) : 643-660. doi: 10.3934/mbe.2015.12.643 |
[13] |
Yuanyuan Huang, Yiping Hao, Min Wang, Wen Zhou, Zhijun Wu. Optimality and stability of symmetric evolutionary games with applications in genetic selection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 503-523. doi: 10.3934/mbe.2015.12.503 |
[14] |
Valentin Keyantuo, Mahamadi Warma. On the interior approximate controllability for fractional wave equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3719-3739. doi: 10.3934/dcds.2016.36.3719 |
[15] |
Moncef Aouadi, Taoufik Moulahi. Approximate controllability of abstract nonsimple thermoelastic problem. Evolution Equations & Control Theory, 2015, 4 (4) : 373-389. doi: 10.3934/eect.2015.4.373 |
[16] |
Hugo Leiva, Nelson Merentes, José L. Sánchez. Approximate controllability of semilinear reaction diffusion equations. Mathematical Control & Related Fields, 2012, 2 (2) : 171-182. doi: 10.3934/mcrf.2012.2.171 |
[17] |
Hugo Leiva, Jahnett Uzcategui. Approximate controllability of discrete semilinear systems and applications. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1803-1812. doi: 10.3934/dcdsb.2016023 |
[18] |
Enrique Fernández-Cara, Manuel González-Burgos, Luz de Teresa. Null-exact controllability of a semilinear cascade system of parabolic-hyperbolic equations. Communications on Pure & Applied Analysis, 2006, 5 (3) : 639-658. doi: 10.3934/cpaa.2006.5.639 |
[19] |
Belhassen Dehman, Jean-Pierre Raymond. Exact controllability for the Lamé system. Mathematical Control & Related Fields, 2015, 5 (4) : 743-760. doi: 10.3934/mcrf.2015.5.743 |
[20] |
Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control & Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1 |
2017 Impact Factor: 1.049
Tools
Metrics
Other articles
by authors
[Back to Top]