2014, 3(2): 207-229. doi: 10.3934/eect.2014.3.207

Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems

1. 

Fachbereich C - Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany, Germany

Received  December 2013 Revised  April 2014 Published  May 2014

Stability and stabilization of linear port-Hamiltonian systems on infinite-dimensional spaces are investigated. This class is general enough to include models of beams and waves as well as transport and Schrödinger equations with boundary control and observation. The analysis is based on the frequency domain method which gives new results for second order port-Hamiltonian systems and hybrid systems. Stabilizing SIP or SOP controllers are designed. The obtained results are applied to the Euler-Bernoulli beam.
Citation: Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207
References:
[1]

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups,, Trans. Amer. Soc. Math., 306 (1988), 837. doi: 10.1090/S0002-9947-1988-0933321-3.

[2]

W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, One-Parameter Semigroups of Positive Operators,, Lecture Notes in Mathematics, (1184).

[3]

G. Chen, M. C. Delfour, A. M. Krall and G. Payres, Modeling, stabilization and control of serially connected beams,, SIAM J. Control Optim., 25 (1987), 526. doi: 10.1137/0325029.

[4]

G. Chen, S. G. Krantz, D. W. Ma, C. E. Wayne and H. H. West, The euler-bernoulli beam equation with boundary energy dissipation,, in Operator Methods for Optimal Control Problems (ed. S. J. Lee), 108 (1987), 67.

[5]

S. Cox and E. Zuazua, The rate at which energy decays in a string damped at one end,, Indiana Univ. Math. J., 44 (1995), 545. doi: 10.1512/iumj.1995.44.2001.

[6]

T. Eisner, Stability of Operators and Operator Semigroups,, Operator Theory: Advances and Applications, (2010).

[7]

K.-J. Engel, Generator property and stability for generalized difference operators,, J. Evol. Equ., 13 (2013), 311. doi: 10.1007/s00028-013-0179-1.

[8]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Graduate Texts in Mathematics, (2000). doi: 10.1007/b97696.

[9]

L. Gearhart, Spectral theory for contraction semigroups on Hilbert spaces,, Trans. Amer. Math. Soc., 236 (1978), 385. doi: 10.1090/S0002-9947-1978-0461206-1.

[10]

F. Guo and F. Huang, Boundary feedback stabilization of the undamped Euler-Bernoulli beam with both ends free,, SIAM J. Control Optim., 43 (2004), 341. doi: 10.1137/S0363012901380961.

[11]

B.-Z. Guo, J.-M. Wang and S.-P. Yung, On the $C_0$-semigroup generation and exponential stability resulting from a shear force feedback on a rotating beam,, Systems Control Lett., 54 (2005), 557. doi: 10.1016/j.sysconle.2004.10.006.

[12]

B. Jacob and H. J. Zwart, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces,, Operator Theory: Advances and Applications, (2012). doi: 10.1007/978-3-0348-0399-1.

[13]

Y. Le Gorrec, H. Zwart and B. Maschke, Dirac structures and boundary control systems associated with skew-symmetric differential operators,, SIAM J. Control Optim., 44 (2005), 1864. doi: 10.1137/040611677.

[14]

W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping,, Ann. Math. Pura Appl., 152 (1988), 281. doi: 10.1007/BF01766154.

[15]

K. Liu and Z. Liu, Boundary stabilization of a nonhomogeneous beam with rotatory inertia at the tip,, J. Comp. Appl. Math., 114 (2000), 1. doi: 10.1016/S0377-0427(99)00284-8.

[16]

Y. I. Lyubich and V. Q. Phong, Asymptotic stability of linear differential equations in Banach spaces,, Studia Math., 88 (1988), 37.

[17]

J. Prüss, On the spectrum of $C_0$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847. doi: 10.2307/1999112.

[18]

H. Ramirez, H. Zwart and Y. Le Gorrec, Exponential Stability of Boundary Controlled Port Hamiltonian Systems with Dynamic Feedback,, IFAC Workshop on Control of Sys. Modeled by Part. Diff. Equ., (2014). doi: 10.1109/TAC.2014.2315754.

[19]

H. Triebel, Theory of Function Spaces,, Monographs in Mathematics, (1983). doi: 10.1007/978-3-0346-0416-1.

[20]

A. J. van der Schaft and B. M. Maschke, Hamiltonian formulation of distributed parameter systems with boundary energy flow,, J. Geom. Phys., 42 (2002), 166. doi: 10.1016/S0393-0440(01)00083-3.

[21]

J. van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators,, Operator Theory: Advances and Applications, (1996). doi: 10.1007/978-3-0348-9206-3.

[22]

J. A. Villegas, A port-Hamiltonian Approach to Distributed Parameter Systems,, PhD thesis, (2007).

[23]

J. A. Villegas, H. Zwart, Y. Le Gorrec and B. Maschke, Exponential stability of a class of boundary control systems,, IEEE Trans. Automat. Control, 54 (2009), 142. doi: 10.1109/TAC.2008.2007176.

[24]

H. Zwart, Y. Le Gorrec, B. Maschke and J. Villegas, Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain,, ESAIM Contr. Optim. Calc. Var., 16 (2010), 1077. doi: 10.1051/cocv/2009036.

show all references

References:
[1]

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups,, Trans. Amer. Soc. Math., 306 (1988), 837. doi: 10.1090/S0002-9947-1988-0933321-3.

[2]

W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, One-Parameter Semigroups of Positive Operators,, Lecture Notes in Mathematics, (1184).

[3]

G. Chen, M. C. Delfour, A. M. Krall and G. Payres, Modeling, stabilization and control of serially connected beams,, SIAM J. Control Optim., 25 (1987), 526. doi: 10.1137/0325029.

[4]

G. Chen, S. G. Krantz, D. W. Ma, C. E. Wayne and H. H. West, The euler-bernoulli beam equation with boundary energy dissipation,, in Operator Methods for Optimal Control Problems (ed. S. J. Lee), 108 (1987), 67.

[5]

S. Cox and E. Zuazua, The rate at which energy decays in a string damped at one end,, Indiana Univ. Math. J., 44 (1995), 545. doi: 10.1512/iumj.1995.44.2001.

[6]

T. Eisner, Stability of Operators and Operator Semigroups,, Operator Theory: Advances and Applications, (2010).

[7]

K.-J. Engel, Generator property and stability for generalized difference operators,, J. Evol. Equ., 13 (2013), 311. doi: 10.1007/s00028-013-0179-1.

[8]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Graduate Texts in Mathematics, (2000). doi: 10.1007/b97696.

[9]

L. Gearhart, Spectral theory for contraction semigroups on Hilbert spaces,, Trans. Amer. Math. Soc., 236 (1978), 385. doi: 10.1090/S0002-9947-1978-0461206-1.

[10]

F. Guo and F. Huang, Boundary feedback stabilization of the undamped Euler-Bernoulli beam with both ends free,, SIAM J. Control Optim., 43 (2004), 341. doi: 10.1137/S0363012901380961.

[11]

B.-Z. Guo, J.-M. Wang and S.-P. Yung, On the $C_0$-semigroup generation and exponential stability resulting from a shear force feedback on a rotating beam,, Systems Control Lett., 54 (2005), 557. doi: 10.1016/j.sysconle.2004.10.006.

[12]

B. Jacob and H. J. Zwart, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces,, Operator Theory: Advances and Applications, (2012). doi: 10.1007/978-3-0348-0399-1.

[13]

Y. Le Gorrec, H. Zwart and B. Maschke, Dirac structures and boundary control systems associated with skew-symmetric differential operators,, SIAM J. Control Optim., 44 (2005), 1864. doi: 10.1137/040611677.

[14]

W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping,, Ann. Math. Pura Appl., 152 (1988), 281. doi: 10.1007/BF01766154.

[15]

K. Liu and Z. Liu, Boundary stabilization of a nonhomogeneous beam with rotatory inertia at the tip,, J. Comp. Appl. Math., 114 (2000), 1. doi: 10.1016/S0377-0427(99)00284-8.

[16]

Y. I. Lyubich and V. Q. Phong, Asymptotic stability of linear differential equations in Banach spaces,, Studia Math., 88 (1988), 37.

[17]

J. Prüss, On the spectrum of $C_0$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847. doi: 10.2307/1999112.

[18]

H. Ramirez, H. Zwart and Y. Le Gorrec, Exponential Stability of Boundary Controlled Port Hamiltonian Systems with Dynamic Feedback,, IFAC Workshop on Control of Sys. Modeled by Part. Diff. Equ., (2014). doi: 10.1109/TAC.2014.2315754.

[19]

H. Triebel, Theory of Function Spaces,, Monographs in Mathematics, (1983). doi: 10.1007/978-3-0346-0416-1.

[20]

A. J. van der Schaft and B. M. Maschke, Hamiltonian formulation of distributed parameter systems with boundary energy flow,, J. Geom. Phys., 42 (2002), 166. doi: 10.1016/S0393-0440(01)00083-3.

[21]

J. van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators,, Operator Theory: Advances and Applications, (1996). doi: 10.1007/978-3-0348-9206-3.

[22]

J. A. Villegas, A port-Hamiltonian Approach to Distributed Parameter Systems,, PhD thesis, (2007).

[23]

J. A. Villegas, H. Zwart, Y. Le Gorrec and B. Maschke, Exponential stability of a class of boundary control systems,, IEEE Trans. Automat. Control, 54 (2009), 142. doi: 10.1109/TAC.2008.2007176.

[24]

H. Zwart, Y. Le Gorrec, B. Maschke and J. Villegas, Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain,, ESAIM Contr. Optim. Calc. Var., 16 (2010), 1077. doi: 10.1051/cocv/2009036.

[1]

Yu-Xia Liang, Ze-Hua Zhou. Supercyclic translation $C_0$-semigroup on complex sectors. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 361-370. doi: 10.3934/dcds.2016.36.361

[2]

Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149

[3]

Chris Guiver, Mark R. Opmeer. Bounded real and positive real balanced truncation for infinite-dimensional systems. Mathematical Control & Related Fields, 2013, 3 (1) : 83-119. doi: 10.3934/mcrf.2013.3.83

[4]

Mark A. Pinsky, Alexandr A. Zevin. Stability criteria for linear Hamiltonian systems with uncertain bounded periodic coefficients. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 243-250. doi: 10.3934/dcds.2005.12.243

[5]

Vladimir Răsvan. On the central stability zone for linear discrete-time Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 734-741. doi: 10.3934/proc.2003.2003.734

[6]

Jiří Neustupa. On $L^2$-Boundedness of a $C_0$-Semigroup generated by the perturbed oseen-type operator arising from flow around a rotating body. Conference Publications, 2007, 2007 (Special) : 758-767. doi: 10.3934/proc.2007.2007.758

[7]

Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9

[8]

Jacek Banasiak, Marcin Moszyński. Hypercyclicity and chaoticity spaces of $C_0$ semigroups. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 577-587. doi: 10.3934/dcds.2008.20.577

[9]

Qing Xu. Backward stochastic Schrödinger and infinite-dimensional Hamiltonian equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5379-5412. doi: 10.3934/dcds.2015.35.5379

[10]

Xueyan Yang, Xiaodi Li, Qiang Xi, Peiyong Duan. Review of stability and stabilization for impulsive delayed systems. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1495-1515. doi: 10.3934/mbe.2018069

[11]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[12]

Didier Georges. Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks & Heterogeneous Media, 2009, 4 (2) : 267-285. doi: 10.3934/nhm.2009.4.267

[13]

J. C. Robinson. A topological time-delay embedding theorem for infinite-dimensional cocycle dynamical systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 731-741. doi: 10.3934/dcdsb.2008.9.731

[14]

Markus Böhm, Björn Schmalfuss. Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3115-3138. doi: 10.3934/dcdsb.2018303

[15]

Radu Ioan Boţ, Sorin-Mihai Grad. On linear vector optimization duality in infinite-dimensional spaces. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 407-415. doi: 10.3934/naco.2011.1.407

[16]

Christian Pötzsche, Stefan Siegmund, Fabian Wirth. A spectral characterization of exponential stability for linear time-invariant systems on time scales. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1223-1241. doi: 10.3934/dcds.2003.9.1223

[17]

José A. Conejero, Alfredo Peris. Hypercyclic translation $C_0$-semigroups on complex sectors. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1195-1208. doi: 10.3934/dcds.2009.25.1195

[18]

Sebastian Hage-Packhäuser, Michael Dellnitz. Stabilization via symmetry switching in hybrid dynamical systems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 239-263. doi: 10.3934/dcdsb.2011.16.239

[19]

Philippe Jouan, Said Naciri. Asymptotic stability of uniformly bounded nonlinear switched systems. Mathematical Control & Related Fields, 2013, 3 (3) : 323-345. doi: 10.3934/mcrf.2013.3.323

[20]

Ken Shirakawa. Asymptotic stability for dynamical systems associated with the one-dimensional Frémond model of shape memory alloys. Conference Publications, 2003, 2003 (Special) : 798-808. doi: 10.3934/proc.2003.2003.798

2017 Impact Factor: 1.049

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]