    June  2014, 3(2): 247-256. doi: 10.3934/eect.2014.3.247

## Non-smooth unobservable states in control problem for the wave equation in $\mathbb{R}^3$

 1 Saint-Petersburg Department of the Steklov Mathematical Institute, Saint-Petersburg State University, Russian Federation, Russian Federation

Received  November 2013 Revised  April 2014 Published  May 2014

The paper deals with a dynamical system \begin{align*} &u_{tt}-\Delta u=0, \qquad (x,t) \in {\mathbb R}^3 \times (-\infty,0) \\ &u \mid_{|x|<-t} =0 , \qquad t<0\\ &\lim_{s \to \infty} su((s+\tau)\omega,-s)=f(\tau,\omega), \qquad (\tau,\omega) \in [0,\infty)\times S^2\,, \end{align*} where $u=u^f(x,t)$ is a solution ( wave), $f \in {\mathcal F}:=L_2\left([0,\infty);L_2\left(S^2\right)\right)$ is a control. For the reachable sets ${\mathcal U}^\xi:=\{u^f(\cdot,-\xi)\,|\,\, f \in {\mathcal F}\}\,\,(\xi\geq 0)$, the embedding ${\mathcal U}^\xi \subset {\mathcal H}^\xi:=\{y \in L_2({\mathbb R}^3)\,|\,\,\,y|_{|x|<\xi}=0\}$ holds, whereas the subspaces ${\mathcal D}^\xi:={\mathcal H}^\xi \ominus {\mathcal U}^\xi$ of unreachable ( unobservable) states are nonzero for $\xi> 0$. There was a conjecture motivated by some geometrical optics arguments that the elements of ${\mathcal D}^\xi$ are $C^\infty$-smooth with respect to $|x|$. We provide rather unexpected counterexamples of $h\in {\mathcal D}^\xi$ with ${\rm sing\,supp\,}h \subset \{x\in{\mathbb R}^3|\,\,|x|=\xi_0>\xi\}$.
Citation: Mikhail I. Belishev, Aleksei F. Vakulenko. Non-smooth unobservable states in control problem for the wave equation in $\mathbb{R}^3$. Evolution Equations & Control Theory, 2014, 3 (2) : 247-256. doi: 10.3934/eect.2014.3.247
##### References:
  S. A. Avdonin, M. I. Belishev and S. I. Ivanov, Controllability in the filled domain for the wave equation with a singular boundary control,, (in Russian) Zap. Nauch. Semin. POMI, 210 (1994), 7. doi: 10.1007/BF02405808.  Google Scholar  M. I. Belishev, Recent progress in the boundary control method,, Invers Problems, 23 (2007). doi: 10.1088/0266-5611/23/5/R01.  Google Scholar  M. I. Belishev and A. F. Vakulenko, On a control problem for the wave equation in $\mathbbR^3$,, (in Russian) Zap. Nauch. Semin. POMI, 332 (2006), 19. doi: 10.1007/s10958-007-0140-3.  Google Scholar  M. I. Belishev and A. F. Vakulenko, Reachable and unreachable sets in the scattering problem for the acoustical equation in $\mathbbR^3$,, SIAM J. Math. Analysis, 39 (2008), 1821. doi: 10.1137/060678877.  Google Scholar  M. I. Belishev and A. F. Vakulenko, $s$-points in three-dimensional acoustical scattering,, SIAM J. Math. Analysis, 42 (2010), 2703. doi: 10.1137/090781486.  Google Scholar  S. Helgason, The Radon Transform,, Birhausser, (1999). doi: 10.1007/978-1-4757-1463-0.  Google Scholar  L. Hörmander, The Analysis of Linear Partial Differential Operators I,, Springer-Verlag, (1983). Google Scholar  M. Ikawa, Hyperbolic Partial Differential Equations and Wave Fenomena,, Translated from the 1997 Japanese original by Bohdan I. Kurpita, (1997). Google Scholar  I. Lasiecka, J-L. Lions and R. Triggiani, Non homogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl, 65 (1986), 149. Google Scholar  P. Lax and R. Phillips, Scattering Theory,, Academic Press, (1967). Google Scholar  D. L. Russell, Boundary value control theory of the higher-dimensional wave equation,, SIAM J. Control, 9 (1971), 29. doi: 10.1137/0309004.  Google Scholar

show all references

##### References:
  S. A. Avdonin, M. I. Belishev and S. I. Ivanov, Controllability in the filled domain for the wave equation with a singular boundary control,, (in Russian) Zap. Nauch. Semin. POMI, 210 (1994), 7. doi: 10.1007/BF02405808.  Google Scholar  M. I. Belishev, Recent progress in the boundary control method,, Invers Problems, 23 (2007). doi: 10.1088/0266-5611/23/5/R01.  Google Scholar  M. I. Belishev and A. F. Vakulenko, On a control problem for the wave equation in $\mathbbR^3$,, (in Russian) Zap. Nauch. Semin. POMI, 332 (2006), 19. doi: 10.1007/s10958-007-0140-3.  Google Scholar  M. I. Belishev and A. F. Vakulenko, Reachable and unreachable sets in the scattering problem for the acoustical equation in $\mathbbR^3$,, SIAM J. Math. Analysis, 39 (2008), 1821. doi: 10.1137/060678877.  Google Scholar  M. I. Belishev and A. F. Vakulenko, $s$-points in three-dimensional acoustical scattering,, SIAM J. Math. Analysis, 42 (2010), 2703. doi: 10.1137/090781486.  Google Scholar  S. Helgason, The Radon Transform,, Birhausser, (1999). doi: 10.1007/978-1-4757-1463-0.  Google Scholar  L. Hörmander, The Analysis of Linear Partial Differential Operators I,, Springer-Verlag, (1983). Google Scholar  M. Ikawa, Hyperbolic Partial Differential Equations and Wave Fenomena,, Translated from the 1997 Japanese original by Bohdan I. Kurpita, (1997). Google Scholar  I. Lasiecka, J-L. Lions and R. Triggiani, Non homogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl, 65 (1986), 149. Google Scholar  P. Lax and R. Phillips, Scattering Theory,, Academic Press, (1967). Google Scholar  D. L. Russell, Boundary value control theory of the higher-dimensional wave equation,, SIAM J. Control, 9 (1971), 29. doi: 10.1137/0309004.  Google Scholar
  Felipe Linares, Jean-Claude Saut. The Cauchy problem for the 3D Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 547-565. doi: 10.3934/dcds.2009.24.547  Indranil SenGupta, Weisheng Jiang, Bo Sun, Maria Christina Mariani. Superradiance problem in a 3D annular domain. Conference Publications, 2011, 2011 (Special) : 1309-1318. doi: 10.3934/proc.2011.2011.1309  Shujuan Lü, Chunbiao Gan, Baohua Wang, Linning Qian, Meisheng Li. Traveling wave solutions and its stability for 3D Ginzburg-Landau type equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 507-527. doi: 10.3934/dcdsb.2011.16.507  Boyan Jonov, Thomas C. Sideris. Global and almost global existence of small solutions to a dissipative wave equation in 3D with nearly null nonlinear terms. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1407-1442. doi: 10.3934/cpaa.2015.14.1407  Robert Baier, Matthias Gerdts, Ilaria Xausa. Approximation of reachable sets using optimal control algorithms. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 519-548. doi: 10.3934/naco.2013.3.519  Roberta Fabbri, Sylvia Novo, Carmen Núñez, Rafael Obaya. Null controllable sets and reachable sets for nonautonomous linear control systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1069-1094. doi: 10.3934/dcdss.2016042  Dietmar Szolnoki. Set oriented methods for computing reachable sets and control sets. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 361-382. doi: 10.3934/dcdsb.2003.3.361  Alp Eden, Varga K. Kalantarov. 3D convective Cahn--Hilliard equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1075-1086. doi: 10.3934/cpaa.2007.6.1075  Elena Kopylova. On dispersion decay for 3D Klein-Gordon equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5765-5780. doi: 10.3934/dcds.2018251  Masaru Yamaguchi. 3D wave equations in sphere-symmetric domain with periodically oscillating boundaries. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 385-396. doi: 10.3934/dcds.2001.7.385  Kunio Hidano, Dongbing Zha. Remarks on a system of quasi-linear wave equations in 3D satisfying the weak null condition. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1735-1767. doi: 10.3934/cpaa.2019082  A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289  Fabrice Delbary, Kim Knudsen. Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem. Inverse Problems & Imaging, 2014, 8 (4) : 991-1012. doi: 10.3934/ipi.2014.8.991  Michael V. Klibanov, Dinh-Liem Nguyen, Loc H. Nguyen, Hui Liu. A globally convergent numerical method for a 3D coefficient inverse problem with a single measurement of multi-frequency data. Inverse Problems & Imaging, 2018, 12 (2) : 493-523. doi: 10.3934/ipi.2018021  Xuecheng Wang. Global solution for the $3D$ quadratic Schrödinger equation of $Q(u, \bar{u}$) type. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5037-5048. doi: 10.3934/dcds.2017217  Chuntian Wang. The existence of strong solutions to the $3D$ Zakharov-Kuznestov equation in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4897-4910. doi: 10.3934/dcds.2014.34.4897  Hong Lu, Shujuan Lü, Mingji Zhang. Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2539-2564. doi: 10.3934/dcds.2017109  Zhaohi Huo, Yueling Jia, Qiaoxin Li. Global well-posedness for the 3D Zakharov-Kuznetsov equation in energy space $H^1$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1797-1851. doi: 10.3934/dcdss.2016075  Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215  Yan Zheng, Jianhua Huang. Exponential convergence for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-12. doi: 10.3934/dcdsb.2019075

2018 Impact Factor: 1.048