# American Institute of Mathematical Sciences

June  2014, 3(2): 287-304. doi: 10.3934/eect.2014.3.287

## Observability of rectangular membranes and plates on small sets

 1 Département de mathématique, Université de Strasbourg, 7 rue René Descartes, 67084 Strasbourg Cedex 2 Sapienza Università di Roma, Sapienza Università di Roma, Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sezione Matematica, Via A. Scarpa n.16 00161 Roma

Received  November 2013 Revised  April 2014 Published  May 2014

Since the works of Haraux and Jaffard we know that rectangular plates may be observed by subregions not satisfying the geometrical control condition. We improve these results by observing only on an arbitrarily short segment inside the domain. The estimates may be strengthened by observing on several well-chosen segments.
In the second part of the paper we establish various observability theorems for rectangular membranes by applying Mehrenberger's recent generalization of Ingham's theorem.
Citation: Vilmos Komornik, Paola Loreti. Observability of rectangular membranes and plates on small sets. Evolution Equations & Control Theory, 2014, 3 (2) : 287-304. doi: 10.3934/eect.2014.3.287
##### References:
 [1] C. Baiocchi, V. Komornik and P. Loreti, Ingham type theorems and applications to control theory,, Bol. Un. Mat. Ital. B (8), 2 (1999), 33.   Google Scholar [2] C. Baiocchi, V. Komornik and P. Loreti, Ingham-Beurling type theorems with weakened gap conditions,, Acta Math. Hungar., 97 (2002), 55.  doi: 10.1023/A:1020806811956.  Google Scholar [3] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024.  doi: 10.1137/0330055.  Google Scholar [4] J. W. S. Cassels, An Introduction to Diophantine Approximation,, Cambridge Tracts in Mathematics and Mathematical Physics, (1957).   Google Scholar [5] S. Gasmi and A. Haraux, $N$-cyclic functions and multiple subharmonic solutions of Duffing's equation,, J. Math. Pures Appl., 97 (2012), 411.  doi: 10.1016/j.matpur.2009.08.005.  Google Scholar [6] A. Haraux, On a completion problem in the theory of distributed control of wave equations,, in Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, (1991), 1987.   Google Scholar [7] A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire,, J. Math. Pures Appl., 68 (1989), 457.   Google Scholar [8] L. F. Ho, Observabilité frontière de l'équation des ondes,, C. R. Acad. Sci. Paris Sér. I Math., 302 (1986), 443.   Google Scholar [9] A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series,, Math. Z., 41 (1936), 367.  doi: 10.1007/BF01180426.  Google Scholar [10] S. Jaffard, Contrôle interne exact des vibrations d'une plaque carrée,, C. R. Acad. Sci. Paris Sér. I Math., 307 (1988), 759.   Google Scholar [11] S. Jaffard, Contrôle interne exact des vibrations d'une plaque rectangulaire,, Portugalia Math., 47 (1990), 423.   Google Scholar [12] V. Komornik and P. Loreti, Fourier Series in Control Theory,, Springer-Verlag, (2005).   Google Scholar [13] V. Komornik and P. Loreti, Multiple-point internal observability of membranes and plates,, Appl. Anal., 90 (2011), 1545.  doi: 10.1080/00036811.2011.569497.  Google Scholar [14] V. Komornik and B. Miara, Cross-like internal observability of rectangular membranes,, Evol. Equations and Control Theory, 3 (2014), 135.  doi: 10.3934/eect.2014.3.135.  Google Scholar [15] J.-L. Lions, Exact controllability, stabilizability, and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1.  doi: 10.1137/1030001.  Google Scholar [16] J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1. Contrôlabilité Exacte,, Masson, (1988).   Google Scholar [17] P. Loreti, On some gap theorems,, in European Women in Mathematics-Marseille 2003, (2003), 39.   Google Scholar [18] P. Loreti and M. Mehrenberger, An Ingham type proof for a two-grid observability theorem,, ESAIM Control Optim. Calc. Var., 14 (2008), 604.  doi: 10.1051/cocv:2007062.  Google Scholar [19] P. Loreti and V. Valente, Partial exact controllability for spherical membranes,, SIAM J. Control Optim., 35 (1997), 641.  doi: 10.1137/S036301299526962X.  Google Scholar [20] M. Mehrenberger, An Ingham type proof for the boundary observability of a N-d wave equation,, C. R. Math. Acad. Sci. Paris, 347 (2009), 63.  doi: 10.1016/j.crma.2008.11.002.  Google Scholar [21] Y. Privat, E. Trélat and E. Zuazua, Optimal observation of the one-dimensional wave equation,, J. Fourier Anal. Appl., 19 (2013), 514.  doi: 10.1007/s00041-013-9267-4.  Google Scholar [22] G. Tenenbaum and M. Tucsnak, Fast and strongly localized observation for the Schrödinger equation,, Trans. Amer. Math. Soc., 361 (2009), 951.  doi: 10.1090/S0002-9947-08-04584-4.  Google Scholar

show all references

##### References:
 [1] C. Baiocchi, V. Komornik and P. Loreti, Ingham type theorems and applications to control theory,, Bol. Un. Mat. Ital. B (8), 2 (1999), 33.   Google Scholar [2] C. Baiocchi, V. Komornik and P. Loreti, Ingham-Beurling type theorems with weakened gap conditions,, Acta Math. Hungar., 97 (2002), 55.  doi: 10.1023/A:1020806811956.  Google Scholar [3] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024.  doi: 10.1137/0330055.  Google Scholar [4] J. W. S. Cassels, An Introduction to Diophantine Approximation,, Cambridge Tracts in Mathematics and Mathematical Physics, (1957).   Google Scholar [5] S. Gasmi and A. Haraux, $N$-cyclic functions and multiple subharmonic solutions of Duffing's equation,, J. Math. Pures Appl., 97 (2012), 411.  doi: 10.1016/j.matpur.2009.08.005.  Google Scholar [6] A. Haraux, On a completion problem in the theory of distributed control of wave equations,, in Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, (1991), 1987.   Google Scholar [7] A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire,, J. Math. Pures Appl., 68 (1989), 457.   Google Scholar [8] L. F. Ho, Observabilité frontière de l'équation des ondes,, C. R. Acad. Sci. Paris Sér. I Math., 302 (1986), 443.   Google Scholar [9] A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series,, Math. Z., 41 (1936), 367.  doi: 10.1007/BF01180426.  Google Scholar [10] S. Jaffard, Contrôle interne exact des vibrations d'une plaque carrée,, C. R. Acad. Sci. Paris Sér. I Math., 307 (1988), 759.   Google Scholar [11] S. Jaffard, Contrôle interne exact des vibrations d'une plaque rectangulaire,, Portugalia Math., 47 (1990), 423.   Google Scholar [12] V. Komornik and P. Loreti, Fourier Series in Control Theory,, Springer-Verlag, (2005).   Google Scholar [13] V. Komornik and P. Loreti, Multiple-point internal observability of membranes and plates,, Appl. Anal., 90 (2011), 1545.  doi: 10.1080/00036811.2011.569497.  Google Scholar [14] V. Komornik and B. Miara, Cross-like internal observability of rectangular membranes,, Evol. Equations and Control Theory, 3 (2014), 135.  doi: 10.3934/eect.2014.3.135.  Google Scholar [15] J.-L. Lions, Exact controllability, stabilizability, and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1.  doi: 10.1137/1030001.  Google Scholar [16] J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1. Contrôlabilité Exacte,, Masson, (1988).   Google Scholar [17] P. Loreti, On some gap theorems,, in European Women in Mathematics-Marseille 2003, (2003), 39.   Google Scholar [18] P. Loreti and M. Mehrenberger, An Ingham type proof for a two-grid observability theorem,, ESAIM Control Optim. Calc. Var., 14 (2008), 604.  doi: 10.1051/cocv:2007062.  Google Scholar [19] P. Loreti and V. Valente, Partial exact controllability for spherical membranes,, SIAM J. Control Optim., 35 (1997), 641.  doi: 10.1137/S036301299526962X.  Google Scholar [20] M. Mehrenberger, An Ingham type proof for the boundary observability of a N-d wave equation,, C. R. Math. Acad. Sci. Paris, 347 (2009), 63.  doi: 10.1016/j.crma.2008.11.002.  Google Scholar [21] Y. Privat, E. Trélat and E. Zuazua, Optimal observation of the one-dimensional wave equation,, J. Fourier Anal. Appl., 19 (2013), 514.  doi: 10.1007/s00041-013-9267-4.  Google Scholar [22] G. Tenenbaum and M. Tucsnak, Fast and strongly localized observation for the Schrödinger equation,, Trans. Amer. Math. Soc., 361 (2009), 951.  doi: 10.1090/S0002-9947-08-04584-4.  Google Scholar
 [1] Imen Benabbas, Djamel Eddine Teniou. Observability of wave equation with Ventcel dynamic condition. Evolution Equations & Control Theory, 2018, 7 (4) : 545-570. doi: 10.3934/eect.2018026 [2] G. Gentile, V. Mastropietro. Convergence of Lindstedt series for the non linear wave equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 509-514. doi: 10.3934/cpaa.2004.3.509 [3] Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017 [4] Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations & Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014 [5] Shrikrishna G. Dani. Simultaneous diophantine approximation with quadratic and linear forms. Journal of Modern Dynamics, 2008, 2 (1) : 129-138. doi: 10.3934/jmd.2008.2.129 [6] Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 43-62. doi: 10.3934/jmd.2008.2.43 [7] Chao Ma, Baowei Wang, Jun Wu. Diophantine approximation of the orbits in topological dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2455-2471. doi: 10.3934/dcds.2019104 [8] Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020054 [9] Sanghoon Kwon, Seonhee Lim. Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 169-186. doi: 10.3934/dcds.2018008 [10] Michel Potier-Ferry, Foudil Mohri, Fan Xu, Noureddine Damil, Bouazza Braikat, Khadija Mhada, Heng Hu, Qun Huang, Saeid Nezamabadi. Cellular instabilities analyzed by multi-scale Fourier series: A review. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 585-597. doi: 10.3934/dcdss.2016013 [11] Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 [12] Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013 [13] Barbara Brandolini, Francesco Chiacchio, Jeffrey J. Langford. Estimates for sums of eigenvalues of the free plate via the fourier transform. Communications on Pure & Applied Analysis, 2020, 19 (1) : 113-122. doi: 10.3934/cpaa.2020007 [14] Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021 [15] Nikita Kalinin, Mikhail Shkolnikov. Introduction to tropical series and wave dynamic on them. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2827-2849. doi: 10.3934/dcds.2018120 [16] Chuang Peng. Minimum degrees of polynomial models on time series. Conference Publications, 2005, 2005 (Special) : 720-729. doi: 10.3934/proc.2005.2005.720 [17] Muhammad I. Mustafa. Viscoelastic plate equation with boundary feedback. Evolution Equations & Control Theory, 2017, 6 (2) : 261-276. doi: 10.3934/eect.2017014 [18] Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223 [19] Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159 [20] Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

2018 Impact Factor: 1.048