December  2014, 3(4): 557-578. doi: 10.3934/eect.2014.3.557

A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction

1. 

Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588-0130, United States

2. 

Department of Mathematics, Statistics, and Computer Science, Dordt College, Sioux Center, IA 51250, United States

Received  February 2014 Revised  May 2014 Published  October 2014

We present qualitative and numerical results on a partial differential equation (PDE) system which models a certain fluid-structure dynamics. Wellposedness is established by constructing for it a nonstandard semigroup generator representation; this representation is accomplished by an appropriate elimination of the pressure. This coupled PDE model involves the Stokes system which evolves on a three dimensional domain $\mathcal{O}$ coupled to a fourth order plate equation, possibly with rotational inertia parameter $\rho >0$. This plate PDE evolves on a flat portion $\Omega$ of the boundary of $\mathcal{O}$. The coupling on $\Omega$ is implemented via the Dirichlet trace of the Stokes system fluid variable - and so the no-slip condition is necessarily not in play - and via the Dirichlet boundary trace of the pressure, which essentially acts as a forcing term on $\Omega$. We note that as the Stokes fluid velocity does not vanish on $\Omega$, the pressure variable cannot be eliminated by the classic Leray projector; instead, it is identified as the solution of an elliptic boundary value problem. Eventually, wellposedness of the system is attained through a nonstandard variational (``inf-sup") formulation. Subsequently we show how our constructive proof of wellposedness naturally gives rise to a mixed finite element method for numerically approximating solutions of this fluid-structure dynamics.
Citation: George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations & Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557
References:
[1]

G. Avalos and M. Dvorak, A new maximality argument for a coupled fluid-structure interaction, with implications for a divergence-free finite element method,, Applicationes Mathematicae, 35 (2008), 259. doi: 10.4064/am35-3-2. Google Scholar

[2]

O. Axelsson and V. A. Barker, Finite Element Solution of Boundary Value Problems, Theory and Computation,, Academic Press, (1984). Google Scholar

[3]

H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners,, Math. Meth. in the Appl. Sci., 2 (1980), 556. doi: 10.1002/mma.1670020416. Google Scholar

[4]

S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods,, Springer-Verlag, (1994). doi: 10.1007/978-1-4757-4338-8. Google Scholar

[5]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,, Springer-Verlag, (1991). doi: 10.1007/978-1-4612-3172-1. Google Scholar

[6]

A. Chambolle, B. Desjardins, M. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate,, J. Math. Fluid Mech, 7 (2005), 368. doi: 10.1007/s00021-004-0121-y. Google Scholar

[7]

I. Chueshov and I. Ryzhkova, A global attractor for a fluid-plate interaction model,, Communications on Pure and Applied Analysis, 12 (2013), 1635. doi: 10.3934/cpaa.2013.12.1635. Google Scholar

[8]

I. Chueshov, A global attractor for a fluid-plate interaction model accounting only for longitudinal deformations of the plate,, Math. Methods Appl. Sci., 34 (2011), 1801. doi: 10.1002/mma.1496. Google Scholar

[9]

P. Ciarlet, The Finite Element Method for Elliptic Problems,, North-Holland, (1978). Google Scholar

[10]

M. Dauge, Stationary stokes and navier-stokes systems on two- or three-dimensional domains with corners, part 1: linearized equations,, Siam J. Math. Anal., 20 (1989), 74. doi: 10.1137/0520006. Google Scholar

[11]

V. Domínguez and F. J. Sayas, Algorithm 884: A simple MATLAB implementation of the argyris element,, ACM Trans. Math. Software, 35 (2009). Google Scholar

[12]

A. Ern and J. Guermond, Theory and Practice of Finite Elements,, Springer-Verlag, (2004). doi: 10.1007/978-1-4757-4355-5. Google Scholar

[13]

P. Grisvard, Caracterization de quelques espaces d'interpolation,, Arch. Rational Mech. Anal., 25 (1967), 40. doi: 10.1007/BF00281421. Google Scholar

[14]

B. Kellogg, Properties of solutions of elliptic boundary value problems,, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations(ed. A. K. Aziz), (1972), 47. Google Scholar

[15]

S. Kesavan, Topics in Functional Analysis and Applications,, Wiley, (1989). Google Scholar

[16]

J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. I,, Springer-Verlag, (1972). Google Scholar

[17]

P. Šolin, Partial Differential Equations and the Finite Element Method,, Wiley, (2006). Google Scholar

[18]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis,, AMS Chelsea Publishing, (2001). Google Scholar

[19]

R. Wait and A. R. Mitchell, Finite Element Analysis and Applications,, Wiley, (1985). Google Scholar

show all references

References:
[1]

G. Avalos and M. Dvorak, A new maximality argument for a coupled fluid-structure interaction, with implications for a divergence-free finite element method,, Applicationes Mathematicae, 35 (2008), 259. doi: 10.4064/am35-3-2. Google Scholar

[2]

O. Axelsson and V. A. Barker, Finite Element Solution of Boundary Value Problems, Theory and Computation,, Academic Press, (1984). Google Scholar

[3]

H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners,, Math. Meth. in the Appl. Sci., 2 (1980), 556. doi: 10.1002/mma.1670020416. Google Scholar

[4]

S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods,, Springer-Verlag, (1994). doi: 10.1007/978-1-4757-4338-8. Google Scholar

[5]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,, Springer-Verlag, (1991). doi: 10.1007/978-1-4612-3172-1. Google Scholar

[6]

A. Chambolle, B. Desjardins, M. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate,, J. Math. Fluid Mech, 7 (2005), 368. doi: 10.1007/s00021-004-0121-y. Google Scholar

[7]

I. Chueshov and I. Ryzhkova, A global attractor for a fluid-plate interaction model,, Communications on Pure and Applied Analysis, 12 (2013), 1635. doi: 10.3934/cpaa.2013.12.1635. Google Scholar

[8]

I. Chueshov, A global attractor for a fluid-plate interaction model accounting only for longitudinal deformations of the plate,, Math. Methods Appl. Sci., 34 (2011), 1801. doi: 10.1002/mma.1496. Google Scholar

[9]

P. Ciarlet, The Finite Element Method for Elliptic Problems,, North-Holland, (1978). Google Scholar

[10]

M. Dauge, Stationary stokes and navier-stokes systems on two- or three-dimensional domains with corners, part 1: linearized equations,, Siam J. Math. Anal., 20 (1989), 74. doi: 10.1137/0520006. Google Scholar

[11]

V. Domínguez and F. J. Sayas, Algorithm 884: A simple MATLAB implementation of the argyris element,, ACM Trans. Math. Software, 35 (2009). Google Scholar

[12]

A. Ern and J. Guermond, Theory and Practice of Finite Elements,, Springer-Verlag, (2004). doi: 10.1007/978-1-4757-4355-5. Google Scholar

[13]

P. Grisvard, Caracterization de quelques espaces d'interpolation,, Arch. Rational Mech. Anal., 25 (1967), 40. doi: 10.1007/BF00281421. Google Scholar

[14]

B. Kellogg, Properties of solutions of elliptic boundary value problems,, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations(ed. A. K. Aziz), (1972), 47. Google Scholar

[15]

S. Kesavan, Topics in Functional Analysis and Applications,, Wiley, (1989). Google Scholar

[16]

J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. I,, Springer-Verlag, (1972). Google Scholar

[17]

P. Šolin, Partial Differential Equations and the Finite Element Method,, Wiley, (2006). Google Scholar

[18]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis,, AMS Chelsea Publishing, (2001). Google Scholar

[19]

R. Wait and A. R. Mitchell, Finite Element Analysis and Applications,, Wiley, (1985). Google Scholar

[1]

Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira. Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences & Engineering, 2017, 14 (1) : 179-193. doi: 10.3934/mbe.2017012

[2]

Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39

[3]

Salim Meddahi, David Mora. Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 269-287. doi: 10.3934/dcdss.2016.9.269

[4]

Daniele Boffi, Lucia Gastaldi. Discrete models for fluid-structure interactions: The finite element Immersed Boundary Method. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 89-107. doi: 10.3934/dcdss.2016.9.89

[5]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[6]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[7]

Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081

[8]

Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045

[9]

Yi Shi, Kai Bao, Xiao-Ping Wang. 3D adaptive finite element method for a phase field model for the moving contact line problems. Inverse Problems & Imaging, 2013, 7 (3) : 947-959. doi: 10.3934/ipi.2013.7.947

[10]

Yinnian He, Yanping Lin, Weiwei Sun. Stabilized finite element method for the non-stationary Navier-Stokes problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 41-68. doi: 10.3934/dcdsb.2006.6.41

[11]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[12]

A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289

[13]

Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure & Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585

[14]

Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101

[15]

Kuanysh A. Bekmaganbetov, Gregory A. Chechkin, Vladimir V. Chepyzhov, Andrey Yu. Goritsky. Homogenization of trajectory attractors of 3D Navier-Stokes system with randomly oscillating force. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2375-2393. doi: 10.3934/dcds.2017103

[16]

Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837

[17]

G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123

[18]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[19]

Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481

[20]

Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 633-650. doi: 10.3934/dcds.2003.9.633

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]