We prove an estimation of the Kolmogorov $\varepsilon$ -entropy in $H$ of the unitary ball in the space $V$ , where $H$ is a Hilbert space and $V$ is a Sobolev-like subspace of $H$ . Then, by means of Zelik's result [
Citation: |
[1] | A. V. Babin and M. I. Vishik, Regular attractors of semigroups and evolution equations, J. Math. Pures Appl, 62 (1983), 441-491. |
[2] | Z. Chen, A note on Kaplan-Yorke-type estimates on the fractal dimension of chaotic attractors, Chaos Solitons Fractals, 3 (1993), 575-582. doi: 10.1016/0960-0779(93)90007-N. |
[3] | V. V. Chepyzhov and A. A. Ilyin, A note on the fractal dimension of attractors of dissipative dynamical systems, Nonlinear Analysis, 44 (2001), 811-819. doi: 10.1016/S0362-546X(99)00309-0. |
[4] | I. Dumer, M. S. Pinsker and V. V. Prelov, On coverings of ellipsoids in Euclidean spaces, Transactions on Information Theory, 50 (2004), 2348-2356. doi: 10.1109/TIT.2004.834759. |
[5] | P. Li and S. T. Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys., 88 (1983), 309-318. |
[6] | R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2$^{nd}$ edition, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3. |
[7] | S. Zelik, The attractor for a nonlinear reaction-diffusion system with a supercritical nonlinearity and its dimension, Rend. Accad. Naz. Sci. XL Mem. Mem. Math. Appl., 24 (2000), 1-25. |