September 2018, 7(3): 501-529. doi: 10.3934/eect.2018024

Optimal control of second order delay-discrete and delay-differential inclusions with state constraints

1. 

Department of Mathematics, Istanbul Technical University, Istanbul, Turkey

2. 

Azerbaijan National Academy of Sciences Institute of Control Systems, Baku, Azerbaijan

* Corresponding author: elimhan22@yahoo.com

Received  June 2017 Revised  February 2018 Published  July 2018

The present paper studies a new class of problems of optimal control theory with state constraints and second order delay-discrete (DSIs) and delay-differential inclusions (DFIs). The basic approach to solving this problem is based on the discretization method. Thus under the "regularity condition the necessary and sufficient conditions of optimality for problems with second order delay-discrete and delay-approximate DSIs are investigated. Then by using discrete approximations as a vehicle, in the forms of Euler-Lagrange and Hamiltonian type inclusions the sufficient conditions of optimality for delay-DFIs, including the peculiar transversality ones, are proved. Here our main idea is the use of equivalence relations for subdifferentials of Hamiltonian functions and locally adjoint mappings (LAMs), which allow us to make a bridge between the basic optimality conditions of second order delay-DSIs and delay-discrete-approximate problems. In particular, applications of these results to the second order semilinear optimal control problem are illustrated as well as the optimality conditions for non-delayed problems are derived.

Citation: Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations & Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024
References:
[1]

N. V. Antipina and V. A. Dykhta, Linear Lyapunov-Krotov functions and sufficient conditions for optimality in the form of the maximum principle, Russian Math. (Iz. VUZ), 46 (2002), 9-20.

[2]

D. L. AzzamA. Makhlouf and L. Thibault, Existence and relaxation theorem for a second order differential inclusion, Numer. Funct. Anal. Optim., 31 (2010), 1103-1119. doi: 10.1080/01630563.2010.510982.

[3]

V. Barbu and T. Precupanu, Convex control problems in banach spaces, Convexity and Optimization in Banach Spaces, (2012), 233-364. doi: 10.1007/978-94-007-2247-7_4.

[4]

V. I. Blagodatskikh, Sufficient conditions for optimality in problems with state constraints, Appl. Math. Optim., 7 (1981), 149-157. doi: 10.1007/BF01442113.

[5]

V. I. Blagodatskikh and A. F. Filippov, Differential inclusions and optimal control, Trudy Mat. Inst. Steklov., 169 (1985), 194-252, 255.

[6]

A. Bressan, Differential inclusions and the control of forest fires, J. Diff. Equ. (special volume in honor of A. Cellina and J. Yorke), 243 (2007), 179-207. doi: 10.1016/j.jde.2007.03.009.

[7]

G. ButtazzoM. E. DrakhlinL. Freddi and E. Stepanov, Homogenization of Optimal Control Problems for Functional Differential Equations, J. Optim. Theory Appl., 93 (1997), 103-119. doi: 10.1023/A:1022649817825.

[8]

P. Cannarsa and P. R. Wolenski, Semiconcavity of the value function for a class of differential inclusions, Discrete Contin. Dyn. Syst. Ser. A, 29 (2011), 453-466. doi: 10.3934/dcds.2011.29.453.

[9]

S. Hu and N. S. Papageorgiou, Delay differential inclusions with constraints, Proceed.AMS, 123 (1995), 2141-2150. doi: 10.1090/S0002-9939-1995-1257111-9.

[10]

A. D. Ioffe and V. Tikhomirov, Theory of Extremal Problems, "Nauka", Moscow, 1974; English transl., North-Holland, Amsterdam, 1978.

[11]

R. J. Kipka and Y. S. Ledyaev, Optimal control of differential inclusions on manifolds, Discrete Contin. Dyn. Syst. Ser. A, 35 (2015), 4455-4475. doi: 10.3934/dcds.2015.35.4455.

[12]

N. C. Kourogenis, Strongly nonlinear second order differential inclusions with generalized boundary conditions, J. Math. Anal. Appl., 287 (2003), 348-364. doi: 10.1016/S0022-247X(02)00511-5.

[13]

V. F. Krotov, Methods of solution of variational problems on the basis of sufficient conditions of absolute minimum, Avtomat. i Telemekh., 23 (1962), 1571-1583.

[14]

I. Lasiecka and N. Fourrier, Regularity and stability of a wave equation with strong damping and dynamic boundary conditions, Evol. Equ. Contr. Theory (EECT), 2 (2013), 631-667. doi: 10.3934/eect.2013.2.631.

[15]

E. N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions, Elsevier, 2011. doi: 10.1016/B978-0-12-388428-2.00001-1.

[16]

E. N. Mahmudov, Duality in the problems of optimal-control for systems described by convex differential-inclusions with delay, Prob. Contr. Inform. Theory, 16 (1987), 411-422.

[17]

E. N. Mahmudov, Locally adjoint mappings and optimization of the first boundary value problem for hyperbolic type discrete and differential inclusions, Nonlin. Anal., 67 (2007), 2966-2981. doi: 10.1016/j.na.2006.09.054.

[18]

E. N. Mahmudov, Necessary and sufficient conditions for discrete and differential inclusions of elliptic type, J. Math. Anal. Appl., 323 (2006), 768-789. doi: 10.1016/j.jmaa.2005.10.069.

[19]

E. N. Mahmudov, Optimal Control of Cauchy Problem for First-Order Discrete and Partial Differential Inclusions, J. Dyn. Contr. Syst., 15 (2009), 587-610. doi: 10.1007/s10883-009-9073-0.

[20]

E. N. Mahmudov, Approximation and Optimization of Higher order discrete and differential inclusions, Nonlin. Diff. Equat. Appl. NoDEA, 21 (2014), 1-26. doi: 10.1007/s00030-013-0234-1.

[21]

E. N. Mahmudov, Mathematical programming and polyhedral optimization of second order discrete and differential inclusions, Pacific J. Optim., 11 (2015), 511-525.

[22]

E. N. Mahmudov, Convex optimization of second order discrete and differential inclusions with inequality constraints, J. Convex Anal., 25 (2018), 293-318.

[23]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Applications, Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 330 and 331, Springer, 2006.

[24]

B. S. Mordukhovich and L. Wang, Optimal control of delay systems with differential and algebraic dynamic constraints, ESAIM: COCV, 11 (2005), 285-309. doi: 10.1051/cocv:2005008.

[25]

N. S. Papageorgiou and V. D. Rădulescu, Periodic solutions for time-dependent subdifferential evolution inclusions, Evol. Equ. Contr. Theory (EECT), 6 (2017), 277-297. doi: 10.3934/eect.2017015.

[26]

D. Q. AV. T. Luan and D. Q. Long, Iterative method for solving a fourth order differential equation with nonlinear boundary condition, Appl. Math. Sci., 4 (2010), 3467-3481.

[27]

S. H. Saker, R. P. Agarwal and D. O'Regan, Properties of solutions of fourth-order differential equations with boundary conditions, J. Inequalit. Appl., 278 (2013), 15pp. doi: 10.1186/1029-242X-2013-278.

[28]

Q. Zhang and G. Li, Nonlinear boundary value problems for second order differential inclusions, Nonlin. Anal.: Theory, Methods Appl., 70 (2009), 3390-3406. doi: 10.1016/j.na.2008.05.007.

[29]

Y. ZhouV. Vijayakumar and R. Murugesu, Controllability for fractional evolution inclusions without compactness, Evol. Equ. Contr. Theory (EECT), 4 (2015), 507-524. doi: 10.3934/eect.2015.4.507.

[30]

D. G. Zill and M. R. Cullen, Differential Equations with Boundary-Value Problems, 5$^{nd}$ edition, Brooks/Cole, 2001.

show all references

References:
[1]

N. V. Antipina and V. A. Dykhta, Linear Lyapunov-Krotov functions and sufficient conditions for optimality in the form of the maximum principle, Russian Math. (Iz. VUZ), 46 (2002), 9-20.

[2]

D. L. AzzamA. Makhlouf and L. Thibault, Existence and relaxation theorem for a second order differential inclusion, Numer. Funct. Anal. Optim., 31 (2010), 1103-1119. doi: 10.1080/01630563.2010.510982.

[3]

V. Barbu and T. Precupanu, Convex control problems in banach spaces, Convexity and Optimization in Banach Spaces, (2012), 233-364. doi: 10.1007/978-94-007-2247-7_4.

[4]

V. I. Blagodatskikh, Sufficient conditions for optimality in problems with state constraints, Appl. Math. Optim., 7 (1981), 149-157. doi: 10.1007/BF01442113.

[5]

V. I. Blagodatskikh and A. F. Filippov, Differential inclusions and optimal control, Trudy Mat. Inst. Steklov., 169 (1985), 194-252, 255.

[6]

A. Bressan, Differential inclusions and the control of forest fires, J. Diff. Equ. (special volume in honor of A. Cellina and J. Yorke), 243 (2007), 179-207. doi: 10.1016/j.jde.2007.03.009.

[7]

G. ButtazzoM. E. DrakhlinL. Freddi and E. Stepanov, Homogenization of Optimal Control Problems for Functional Differential Equations, J. Optim. Theory Appl., 93 (1997), 103-119. doi: 10.1023/A:1022649817825.

[8]

P. Cannarsa and P. R. Wolenski, Semiconcavity of the value function for a class of differential inclusions, Discrete Contin. Dyn. Syst. Ser. A, 29 (2011), 453-466. doi: 10.3934/dcds.2011.29.453.

[9]

S. Hu and N. S. Papageorgiou, Delay differential inclusions with constraints, Proceed.AMS, 123 (1995), 2141-2150. doi: 10.1090/S0002-9939-1995-1257111-9.

[10]

A. D. Ioffe and V. Tikhomirov, Theory of Extremal Problems, "Nauka", Moscow, 1974; English transl., North-Holland, Amsterdam, 1978.

[11]

R. J. Kipka and Y. S. Ledyaev, Optimal control of differential inclusions on manifolds, Discrete Contin. Dyn. Syst. Ser. A, 35 (2015), 4455-4475. doi: 10.3934/dcds.2015.35.4455.

[12]

N. C. Kourogenis, Strongly nonlinear second order differential inclusions with generalized boundary conditions, J. Math. Anal. Appl., 287 (2003), 348-364. doi: 10.1016/S0022-247X(02)00511-5.

[13]

V. F. Krotov, Methods of solution of variational problems on the basis of sufficient conditions of absolute minimum, Avtomat. i Telemekh., 23 (1962), 1571-1583.

[14]

I. Lasiecka and N. Fourrier, Regularity and stability of a wave equation with strong damping and dynamic boundary conditions, Evol. Equ. Contr. Theory (EECT), 2 (2013), 631-667. doi: 10.3934/eect.2013.2.631.

[15]

E. N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions, Elsevier, 2011. doi: 10.1016/B978-0-12-388428-2.00001-1.

[16]

E. N. Mahmudov, Duality in the problems of optimal-control for systems described by convex differential-inclusions with delay, Prob. Contr. Inform. Theory, 16 (1987), 411-422.

[17]

E. N. Mahmudov, Locally adjoint mappings and optimization of the first boundary value problem for hyperbolic type discrete and differential inclusions, Nonlin. Anal., 67 (2007), 2966-2981. doi: 10.1016/j.na.2006.09.054.

[18]

E. N. Mahmudov, Necessary and sufficient conditions for discrete and differential inclusions of elliptic type, J. Math. Anal. Appl., 323 (2006), 768-789. doi: 10.1016/j.jmaa.2005.10.069.

[19]

E. N. Mahmudov, Optimal Control of Cauchy Problem for First-Order Discrete and Partial Differential Inclusions, J. Dyn. Contr. Syst., 15 (2009), 587-610. doi: 10.1007/s10883-009-9073-0.

[20]

E. N. Mahmudov, Approximation and Optimization of Higher order discrete and differential inclusions, Nonlin. Diff. Equat. Appl. NoDEA, 21 (2014), 1-26. doi: 10.1007/s00030-013-0234-1.

[21]

E. N. Mahmudov, Mathematical programming and polyhedral optimization of second order discrete and differential inclusions, Pacific J. Optim., 11 (2015), 511-525.

[22]

E. N. Mahmudov, Convex optimization of second order discrete and differential inclusions with inequality constraints, J. Convex Anal., 25 (2018), 293-318.

[23]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Applications, Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 330 and 331, Springer, 2006.

[24]

B. S. Mordukhovich and L. Wang, Optimal control of delay systems with differential and algebraic dynamic constraints, ESAIM: COCV, 11 (2005), 285-309. doi: 10.1051/cocv:2005008.

[25]

N. S. Papageorgiou and V. D. Rădulescu, Periodic solutions for time-dependent subdifferential evolution inclusions, Evol. Equ. Contr. Theory (EECT), 6 (2017), 277-297. doi: 10.3934/eect.2017015.

[26]

D. Q. AV. T. Luan and D. Q. Long, Iterative method for solving a fourth order differential equation with nonlinear boundary condition, Appl. Math. Sci., 4 (2010), 3467-3481.

[27]

S. H. Saker, R. P. Agarwal and D. O'Regan, Properties of solutions of fourth-order differential equations with boundary conditions, J. Inequalit. Appl., 278 (2013), 15pp. doi: 10.1186/1029-242X-2013-278.

[28]

Q. Zhang and G. Li, Nonlinear boundary value problems for second order differential inclusions, Nonlin. Anal.: Theory, Methods Appl., 70 (2009), 3390-3406. doi: 10.1016/j.na.2008.05.007.

[29]

Y. ZhouV. Vijayakumar and R. Murugesu, Controllability for fractional evolution inclusions without compactness, Evol. Equ. Contr. Theory (EECT), 4 (2015), 507-524. doi: 10.3934/eect.2015.4.507.

[30]

D. G. Zill and M. R. Cullen, Differential Equations with Boundary-Value Problems, 5$^{nd}$ edition, Brooks/Cole, 2001.

[1]

Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511

[2]

Menita Carozza, Jan Kristensen, Antonia Passarelli di Napoli. On the validity of the Euler-Lagrange system. Communications on Pure & Applied Analysis, 2015, 14 (1) : 51-62. doi: 10.3934/cpaa.2015.14.51

[3]

Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449

[4]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[5]

Serhiy Yanchuk, Leonhard Lücken, Matthias Wolfrum, Alexander Mielke. Spectrum and amplitude equations for scalar delay-differential equations with large delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 537-553. doi: 10.3934/dcds.2015.35.537

[6]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[7]

Saroj Panigrahi, Rakhee Basu. Oscillation results for second order nonlinear neutral differential equations with delay. Conference Publications, 2015, 2015 (special) : 906-912. doi: 10.3934/proc.2015.0906

[8]

Zhiming Guo, Xiaomin Zhang. Multiplicity results for periodic solutions to a class of second order delay differential equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1529-1542. doi: 10.3934/cpaa.2010.9.1529

[9]

Louis Tcheugoue Tebou. Equivalence between observability and stabilization for a class of second order semilinear evolution. Conference Publications, 2009, 2009 (Special) : 744-752. doi: 10.3934/proc.2009.2009.744

[10]

Urszula Foryś, Jan Poleszczuk. A delay-differential equation model of HIV related cancer--immune system dynamics. Mathematical Biosciences & Engineering, 2011, 8 (2) : 627-641. doi: 10.3934/mbe.2011.8.627

[11]

Pasquale Palumbo, Simona Panunzi, Andrea De Gaetano. Qualitative behavior of a family of delay-differential models of the Glucose-Insulin system. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 399-424. doi: 10.3934/dcdsb.2007.7.399

[12]

Eugenii Shustin, Emilia Fridman, Leonid Fridman. Oscillations in a second-order discontinuous system with delay. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 339-358. doi: 10.3934/dcds.2003.9.339

[13]

Paola Buttazzoni, Alessandro Fonda. Periodic perturbations of scalar second order differential equations. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 451-455. doi: 10.3934/dcds.1997.3.451

[14]

Kunquan Lan. Eigenvalues of second order differential equations with singularities. Conference Publications, 2001, 2001 (Special) : 241-247. doi: 10.3934/proc.2001.2001.241

[15]

Min Tang. Second order all speed method for the isentropic Euler equations. Kinetic & Related Models, 2012, 5 (1) : 155-184. doi: 10.3934/krm.2012.5.155

[16]

Ioan Bucataru. A setting for higher order differential equation fields and higher order Lagrange and Finsler spaces. Journal of Geometric Mechanics, 2013, 5 (3) : 257-279. doi: 10.3934/jgm.2013.5.257

[17]

Bahareh Akhtari, Esmail Babolian, Andreas Neuenkirch. An Euler scheme for stochastic delay differential equations on unbounded domains: Pathwise convergence. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 23-38. doi: 10.3934/dcdsb.2015.20.23

[18]

Caiping Liu, Heungwing Lee. Lagrange multiplier rules for approximate solutions in vector optimization. Journal of Industrial & Management Optimization, 2012, 8 (3) : 749-764. doi: 10.3934/jimo.2012.8.749

[19]

RazIye Mert, A. Zafer. A necessary and sufficient condition for oscillation of second order sublinear delay dynamic equations. Conference Publications, 2011, 2011 (Special) : 1061-1067. doi: 10.3934/proc.2011.2011.1061

[20]

Zhen Wang, Xiong Li, Jinzhi Lei. Second moment boundedness of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2963-2991. doi: 10.3934/dcdsb.2014.19.2963

2017 Impact Factor: 1.049

Metrics

  • PDF downloads (76)
  • HTML views (174)
  • Cited by (0)

Other articles
by authors

[Back to Top]