# American Institute of Mathematical Sciences

doi: 10.3934/eect.2020042

## A nonsmooth approach for the modelling of a mechanical rotary drilling system with friction

 1 Laboratoire XLIM, Université de Limoges, 87060 Limoges, France 2 Laboratoire PIMENT, Université de La Réunion, 97400 Saint-Denis, France

Dedicated to 70th birthday of Professor Meir Shillor.

Received  August 2019 Revised  November 2019 Published  March 2020

In this paper, we show how the approach of nonsmooth dynamical systems can be used to develop a suitable method for the modelling of a rotary oil drilling system with friction. We study different kinds of frictions and analyse the mathematical properties of the involved dynamical systems. We show that using a general Stribeck model for the frictional contact, we can formulate the rotary drilling system as a well-posed evolution variational inequality. Several numerical simulations are also given to illustrate both the model and the theoretical results.

Citation: Samir Adly, Daniel Goeleven. A nonsmooth approach for the modelling of a mechanical rotary drilling system with friction. Evolution Equations & Control Theory, doi: 10.3934/eect.2020042
##### References:

show all references

##### References:
General friction model as in (6) and the function $\varphi$ as in (7)
Coulomb friction model
Stribeck friction model
Stiction model
Consistent stiction model as in (6) with $\varphi_+(x) = F_C +(F_S-F_C)e^{-\frac{x}{v_s}}$
Oil drilling rig illustration-1. Mud tank, 2. Shale shakers, 3. Suction line (mud pump), 4. Mud pump, 5. Motor or power source, 6. Vibrating hose, 7. Draw-works (winch), 8. Standpipe 9. Kelly hose, 10. Goose-neck, 11. Traveling block, 12. Drill line, 13. Crown block 14. Derrick-Author: Tosaka-Attribution 3.0 Unported (CC BY 3.0) - https://creativecommons.org/licenses/by/3.0/deed.en (https://commons.wikimedia.org/wiki/File:Oil_Rig_NT.PNG)
Rotary drilling system
Graph of the function $V(t)$ in Table 3
Numerical solution of the evolution variational inequality (19) with the initial conditions given in Table 5
Numerical solution of the evolution variational inequality (23) with the initial conditions given in Table 5
Parameters
 $J_1$ $999.35 \; (kg.m^2)$ $J_2$ $127.27\; (kg.m^2)$ $d_1$ $51.38\; (N.m.s/rad)$ $d_2$ $39.79 \;(N.m.s)$ $k$ $481.29 \; (N.m/rad)$ $R$ $0.01 \;(\Omega)$ $L$ $0.005 \;(H)$ $K_M$ $6 \;(N.m/A)$ $N$ $7.20$ $K = NK_M$ $43.20 \;(N.m/A)$ $E$ $130 \;(MJ/m^3)$ $\delta$ $0.64 \times 10^{-3}\;(m/rad)$ $R_B$ $0.10 \; m$ $\mu_C$ $0.4$ $\mu_S$ $0.6$
 $J_1$ $999.35 \; (kg.m^2)$ $J_2$ $127.27\; (kg.m^2)$ $d_1$ $51.38\; (N.m.s/rad)$ $d_2$ $39.79 \;(N.m.s)$ $k$ $481.29 \; (N.m/rad)$ $R$ $0.01 \;(\Omega)$ $L$ $0.005 \;(H)$ $K_M$ $6 \;(N.m/A)$ $N$ $7.20$ $K = NK_M$ $43.20 \;(N.m/A)$ $E$ $130 \;(MJ/m^3)$ $\delta$ $0.64 \times 10^{-3}\;(m/rad)$ $R_B$ $0.10 \; m$ $\mu_C$ $0.4$ $\mu_S$ $0.6$
Empirical coefficients
 $\sigma$ $1$ $\omega_s$ $10^{-3}$ $(rad/s)$
 $\sigma$ $1$ $\omega_s$ $10^{-3}$ $(rad/s)$
Motor voltage. Augmentation of DC motor voltage from 125 (V) to 150 (V) at $t = 30 \; (s)$ (see Figure 8)
Weight-On-Bit and corresponding friction torques
 $W$ $15 000 \; (kg)$ $T_C = \frac{1}{2}\mu_CR_BW$ $300 \; (kg.m)$ $T_S = \frac{1}{2}\mu_SR_BW$ $450 \; (kg.m)$ $T_{{\rm CUT}} = \frac{1}{2} \delta R_B^2E$ $4.16\, 10^{-4}\; (MJ/rad)$
 $W$ $15 000 \; (kg)$ $T_C = \frac{1}{2}\mu_CR_BW$ $300 \; (kg.m)$ $T_S = \frac{1}{2}\mu_SR_BW$ $450 \; (kg.m)$ $T_{{\rm CUT}} = \frac{1}{2} \delta R_B^2E$ $4.16\, 10^{-4}\; (MJ/rad)$
Initial conditions for problems (19) and (23)
 [1] Leszek Gasiński, Piotr Kalita. On dynamic contact problem with generalized Coulomb friction, normal compliance and damage. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020049 [2] Stanislaw Migórski. A class of hemivariational inequalities for electroelastic contact problems with slip dependent friction. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 117-126. doi: 10.3934/dcdss.2008.1.117 [3] Alain Léger, Elaine Pratt. On the equilibria and qualitative dynamics of a forced nonlinear oscillator with contact and friction. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 501-527. doi: 10.3934/dcdss.2016009 [4] Hong Cai, Zhong Tan, Qiuju Xu. Time periodic solutions to Navier-Stokes-Korteweg system with friction. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 611-629. doi: 10.3934/dcds.2016.36.611 [5] Qi Wang, Huilian Peng, Fangfang Zhuang. A constraint-stabilized method for multibody dynamics with friction-affected translational joints based on HLCP. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 589-605. doi: 10.3934/dcdsb.2011.16.589 [6] Robert S. Strichartz. A fractal quantum mechanical model with Coulomb potential. Communications on Pure & Applied Analysis, 2009, 8 (2) : 743-755. doi: 10.3934/cpaa.2009.8.743 [7] Géry de Saxcé. Modelling contact with isotropic and anisotropic friction by the bipotential approach. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 409-425. doi: 10.3934/dcdss.2016004 [8] Liejune Shiau, Roland Glowinski. Operator splitting method for friction constrained dynamical systems. Conference Publications, 2005, 2005 (Special) : 806-815. doi: 10.3934/proc.2005.2005.806 [9] Ivan Polekhin. On motions without falling of an inverted pendulum with dry friction. Journal of Geometric Mechanics, 2018, 10 (4) : 411-417. doi: 10.3934/jgm.2018015 [10] Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023 [11] Haisen Zhang. Clarke directional derivatives of regularized gap functions for nonsmooth quasi-variational inequalities. Mathematical Control & Related Fields, 2014, 4 (3) : 365-379. doi: 10.3934/mcrf.2014.4.365 [12] Martin Gugat, Markus Dick. Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Mathematical Control & Related Fields, 2011, 1 (4) : 469-491. doi: 10.3934/mcrf.2011.1.469 [13] Amina Amassad, Mircea Sofonea. Analysis of a quasistatic viscoplastic problem involving tresca friction law. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 55-72. doi: 10.3934/dcds.1998.4.55 [14] Stanislaw Migórski, Anna Ochal, Mircea Sofonea. Analysis of a dynamic Elastic-Viscoplastic contact problem with friction. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 887-902. doi: 10.3934/dcdsb.2008.10.887 [15] Zhong Tan, Xu Zhang, Huaqiao Wang. Asymptotic behavior of Navier-Stokes-Korteweg with friction in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2243-2259. doi: 10.3934/dcds.2014.34.2243 [16] Samir Adly, Tahar Haddad. On evolution quasi-variational inequalities and implicit state-dependent sweeping processes. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020105 [17] Sandra Ricardo, Witold Respondek. When is a control system mechanical?. Journal of Geometric Mechanics, 2010, 2 (3) : 265-302. doi: 10.3934/jgm.2010.2.265 [18] Renjun Duan, Shuangqian Liu. Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force. Kinetic & Related Models, 2013, 6 (4) : 687-700. doi: 10.3934/krm.2013.6.687 [19] Markus Dick, Martin Gugat, Günter Leugering. A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 225-244. doi: 10.3934/naco.2011.1.225 [20] J. Ángel Cid, Pedro J. Torres. On the existence and stability of periodic solutions for pendulum-like equations with friction and $\phi$-Laplacian. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 141-152. doi: 10.3934/dcds.2013.33.141

2018 Impact Factor: 1.048