# American Institute of Mathematical Sciences

doi: 10.3934/eect.2020048

## Tykhonov well-posedness of a viscoplastic contact problem†

 1 School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China 2 Laboratoire de Mathématiques et Physique, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France

* Corresponding author: Mircea Sofonea

†This paper is dedicated to Professor Meir Shillor on the occasion of his 70th birthday.

Received  October 2019 Published  March 2020

We consider an initial and boundary value problem ${{\mathcal{P}}}$ which describes the frictionless contact of a viscoplastic body with an obstacle made of a rigid body covered by a layer of elastic material. The process is quasistatic and the time of interest is $\mathbb{R}_+ = [0,+\infty)$. We list the assumptions on the data and derive a variational formulation ${{\mathcal{P}}}_V$ of the problem, in a form of a system coupling an implicit differential equation with a time-dependent variational-hemivariational inequality, which has a unique solution. We introduce the concept of Tykhonov triple ${{\mathcal{T}}} = (I,\Omega, {{\mathcal{C}}})$ where $I$ is set of parameters, $\Omega$ represents a family of approximating sets and ${{\mathcal{C} }}$ is a set of sequences, then we define the well-posedness of Problem ${{\mathcal{P}}}_V$ with respect to ${{\mathcal{T}}}$. Our main result is Theorem 3.4, which provides sufficient conditions guaranteeing the well-posedness of ${{\mathcal{P} }}_V$ with respect to a specific Tykhonov triple. We use this theorem in order to provide the continuous dependence of the solution with respect to the data. Finally, we state and prove additional convergence results which show that the weak solution to problem ${{\mathcal{P}}}$ can be approached by the weak solutions of different contact problems. Moreover, we provide the mechanical interpretation of these convergence results.

Citation: Mircea Sofonea, Yi-bin Xiao. Tykhonov well-posedness of a viscoplastic contact problem. Evolution Equations & Control Theory, doi: 10.3934/eect.2020048
##### References:

show all references

##### References:
 [1] Andaluzia Matei, Mircea Sofonea. Dual formulation of a viscoplastic contact problem with unilateral constraint. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1587-1598. doi: 10.3934/dcdss.2013.6.1587 [2] Zhenhai Liu, Van Thien Nguyen, Jen-Chih Yao, Shengda Zeng. History-dependent differential variational-hemivariational inequalities with applications to contact mechanics. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020044 [3] Changjie Fang, Weimin Han. Well-posedness and optimal control of a hemivariational inequality for nonstationary Stokes fluid flow. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5369-5386. doi: 10.3934/dcds.2016036 [4] Rong Hu, Ya-Ping Fang, Nan-Jing Huang. Levitin-Polyak well-posedness for variational inequalities and for optimization problems with variational inequality constraints. Journal of Industrial & Management Optimization, 2010, 6 (3) : 465-481. doi: 10.3934/jimo.2010.6.465 [5] Jian-Wen Peng, Xin-Min Yang. Levitin-Polyak well-posedness of a system of generalized vector variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (3) : 701-714. doi: 10.3934/jimo.2015.11.701 [6] X. X. Huang, Xiaoqi Yang. Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints. Journal of Industrial & Management Optimization, 2007, 3 (4) : 671-684. doi: 10.3934/jimo.2007.3.671 [7] Stanisław Migórski, Biao Zeng. Convergence of solutions to inverse problems for a class of variational-hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4477-4498. doi: 10.3934/dcdsb.2018172 [8] Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437 [9] Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007 [10] Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241 [11] Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527 [12] A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469 [13] Carlos F. Daganzo. On the variational theory of traffic flow: well-posedness, duality and applications. Networks & Heterogeneous Media, 2006, 1 (4) : 601-619. doi: 10.3934/nhm.2006.1.601 [14] Stanislaw Migórski. Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1339-1356. doi: 10.3934/dcdsb.2006.6.1339 [15] Can Li, Weihua Deng, Lijing Zhao. Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1989-2015. doi: 10.3934/dcdsb.2019026 [16] Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763 [17] Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321 [18] Ricardo A. Pastrán, Oscar G. Riaño. Sharp well-posedness for the Chen-Lee equation. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2179-2202. doi: 10.3934/cpaa.2016033 [19] Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673 [20] Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

2018 Impact Factor: 1.048